Step |
Hyp |
Ref |
Expression |
1 |
|
climinf2.k |
|- F/ k ph |
2 |
|
climinf2.n |
|- F/_ k F |
3 |
|
climinf2.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
climinf2.m |
|- ( ph -> M e. ZZ ) |
5 |
|
climinf2.f |
|- ( ph -> F : Z --> RR ) |
6 |
|
climinf2.l |
|- ( ( ph /\ k e. Z ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
7 |
|
climinf2.e |
|- ( ph -> E. x e. RR A. k e. Z x <_ ( F ` k ) ) |
8 |
|
nfv |
|- F/ k j e. Z |
9 |
1 8
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
10 |
|
nfcv |
|- F/_ k ( j + 1 ) |
11 |
2 10
|
nffv |
|- F/_ k ( F ` ( j + 1 ) ) |
12 |
|
nfcv |
|- F/_ k <_ |
13 |
|
nfcv |
|- F/_ k j |
14 |
2 13
|
nffv |
|- F/_ k ( F ` j ) |
15 |
11 12 14
|
nfbr |
|- F/ k ( F ` ( j + 1 ) ) <_ ( F ` j ) |
16 |
9 15
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( F ` ( j + 1 ) ) <_ ( F ` j ) ) |
17 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
18 |
17
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
19 |
|
fvoveq1 |
|- ( k = j -> ( F ` ( k + 1 ) ) = ( F ` ( j + 1 ) ) ) |
20 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
21 |
19 20
|
breq12d |
|- ( k = j -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> ( F ` ( j + 1 ) ) <_ ( F ` j ) ) ) |
22 |
18 21
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) <-> ( ( ph /\ j e. Z ) -> ( F ` ( j + 1 ) ) <_ ( F ` j ) ) ) ) |
23 |
16 22 6
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( F ` ( j + 1 ) ) <_ ( F ` j ) ) |
24 |
|
breq1 |
|- ( x = y -> ( x <_ ( F ` k ) <-> y <_ ( F ` k ) ) ) |
25 |
24
|
ralbidv |
|- ( x = y -> ( A. k e. Z x <_ ( F ` k ) <-> A. k e. Z y <_ ( F ` k ) ) ) |
26 |
|
nfv |
|- F/ j y <_ ( F ` k ) |
27 |
|
nfcv |
|- F/_ k y |
28 |
27 12 14
|
nfbr |
|- F/ k y <_ ( F ` j ) |
29 |
20
|
breq2d |
|- ( k = j -> ( y <_ ( F ` k ) <-> y <_ ( F ` j ) ) ) |
30 |
26 28 29
|
cbvralw |
|- ( A. k e. Z y <_ ( F ` k ) <-> A. j e. Z y <_ ( F ` j ) ) |
31 |
30
|
a1i |
|- ( x = y -> ( A. k e. Z y <_ ( F ` k ) <-> A. j e. Z y <_ ( F ` j ) ) ) |
32 |
25 31
|
bitrd |
|- ( x = y -> ( A. k e. Z x <_ ( F ` k ) <-> A. j e. Z y <_ ( F ` j ) ) ) |
33 |
32
|
cbvrexvw |
|- ( E. x e. RR A. k e. Z x <_ ( F ` k ) <-> E. y e. RR A. j e. Z y <_ ( F ` j ) ) |
34 |
7 33
|
sylib |
|- ( ph -> E. y e. RR A. j e. Z y <_ ( F ` j ) ) |
35 |
3 4 5 23 34
|
climinf2lem |
|- ( ph -> F ~~> inf ( ran F , RR* , < ) ) |