Metamath Proof Explorer


Theorem infrnmptle

Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infrnmptle.x
|- F/ x ph
infrnmptle.b
|- ( ( ph /\ x e. A ) -> B e. RR* )
infrnmptle.c
|- ( ( ph /\ x e. A ) -> C e. RR* )
infrnmptle.l
|- ( ( ph /\ x e. A ) -> B <_ C )
Assertion infrnmptle
|- ( ph -> inf ( ran ( x e. A |-> B ) , RR* , < ) <_ inf ( ran ( x e. A |-> C ) , RR* , < ) )

Proof

Step Hyp Ref Expression
1 infrnmptle.x
 |-  F/ x ph
2 infrnmptle.b
 |-  ( ( ph /\ x e. A ) -> B e. RR* )
3 infrnmptle.c
 |-  ( ( ph /\ x e. A ) -> C e. RR* )
4 infrnmptle.l
 |-  ( ( ph /\ x e. A ) -> B <_ C )
5 nfv
 |-  F/ y ph
6 nfv
 |-  F/ z ph
7 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
8 1 7 2 rnmptssd
 |-  ( ph -> ran ( x e. A |-> B ) C_ RR* )
9 eqid
 |-  ( x e. A |-> C ) = ( x e. A |-> C )
10 1 9 3 rnmptssd
 |-  ( ph -> ran ( x e. A |-> C ) C_ RR* )
11 vex
 |-  y e. _V
12 9 elrnmpt
 |-  ( y e. _V -> ( y e. ran ( x e. A |-> C ) <-> E. x e. A y = C ) )
13 11 12 ax-mp
 |-  ( y e. ran ( x e. A |-> C ) <-> E. x e. A y = C )
14 13 biimpi
 |-  ( y e. ran ( x e. A |-> C ) -> E. x e. A y = C )
15 14 adantl
 |-  ( ( ph /\ y e. ran ( x e. A |-> C ) ) -> E. x e. A y = C )
16 nfmpt1
 |-  F/_ x ( x e. A |-> B )
17 16 nfrn
 |-  F/_ x ran ( x e. A |-> B )
18 nfv
 |-  F/ x z <_ y
19 17 18 nfrex
 |-  F/ x E. z e. ran ( x e. A |-> B ) z <_ y
20 simpr
 |-  ( ( ph /\ x e. A ) -> x e. A )
21 7 elrnmpt1
 |-  ( ( x e. A /\ B e. RR* ) -> B e. ran ( x e. A |-> B ) )
22 20 2 21 syl2anc
 |-  ( ( ph /\ x e. A ) -> B e. ran ( x e. A |-> B ) )
23 22 3adant3
 |-  ( ( ph /\ x e. A /\ y = C ) -> B e. ran ( x e. A |-> B ) )
24 4 3adant3
 |-  ( ( ph /\ x e. A /\ y = C ) -> B <_ C )
25 id
 |-  ( y = C -> y = C )
26 25 eqcomd
 |-  ( y = C -> C = y )
27 26 3ad2ant3
 |-  ( ( ph /\ x e. A /\ y = C ) -> C = y )
28 24 27 breqtrd
 |-  ( ( ph /\ x e. A /\ y = C ) -> B <_ y )
29 breq1
 |-  ( z = B -> ( z <_ y <-> B <_ y ) )
30 29 rspcev
 |-  ( ( B e. ran ( x e. A |-> B ) /\ B <_ y ) -> E. z e. ran ( x e. A |-> B ) z <_ y )
31 23 28 30 syl2anc
 |-  ( ( ph /\ x e. A /\ y = C ) -> E. z e. ran ( x e. A |-> B ) z <_ y )
32 31 3exp
 |-  ( ph -> ( x e. A -> ( y = C -> E. z e. ran ( x e. A |-> B ) z <_ y ) ) )
33 1 19 32 rexlimd
 |-  ( ph -> ( E. x e. A y = C -> E. z e. ran ( x e. A |-> B ) z <_ y ) )
34 33 adantr
 |-  ( ( ph /\ y e. ran ( x e. A |-> C ) ) -> ( E. x e. A y = C -> E. z e. ran ( x e. A |-> B ) z <_ y ) )
35 15 34 mpd
 |-  ( ( ph /\ y e. ran ( x e. A |-> C ) ) -> E. z e. ran ( x e. A |-> B ) z <_ y )
36 5 6 8 10 35 infleinf2
 |-  ( ph -> inf ( ran ( x e. A |-> B ) , RR* , < ) <_ inf ( ran ( x e. A |-> C ) , RR* , < ) )