Step |
Hyp |
Ref |
Expression |
1 |
|
infrnmptle.x |
|- F/ x ph |
2 |
|
infrnmptle.b |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
3 |
|
infrnmptle.c |
|- ( ( ph /\ x e. A ) -> C e. RR* ) |
4 |
|
infrnmptle.l |
|- ( ( ph /\ x e. A ) -> B <_ C ) |
5 |
|
nfv |
|- F/ y ph |
6 |
|
nfv |
|- F/ z ph |
7 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
8 |
1 7 2
|
rnmptssd |
|- ( ph -> ran ( x e. A |-> B ) C_ RR* ) |
9 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
10 |
1 9 3
|
rnmptssd |
|- ( ph -> ran ( x e. A |-> C ) C_ RR* ) |
11 |
|
vex |
|- y e. _V |
12 |
9
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( x e. A |-> C ) <-> E. x e. A y = C ) ) |
13 |
11 12
|
ax-mp |
|- ( y e. ran ( x e. A |-> C ) <-> E. x e. A y = C ) |
14 |
13
|
biimpi |
|- ( y e. ran ( x e. A |-> C ) -> E. x e. A y = C ) |
15 |
14
|
adantl |
|- ( ( ph /\ y e. ran ( x e. A |-> C ) ) -> E. x e. A y = C ) |
16 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
17 |
16
|
nfrn |
|- F/_ x ran ( x e. A |-> B ) |
18 |
|
nfv |
|- F/ x z <_ y |
19 |
17 18
|
nfrex |
|- F/ x E. z e. ran ( x e. A |-> B ) z <_ y |
20 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
21 |
7
|
elrnmpt1 |
|- ( ( x e. A /\ B e. RR* ) -> B e. ran ( x e. A |-> B ) ) |
22 |
20 2 21
|
syl2anc |
|- ( ( ph /\ x e. A ) -> B e. ran ( x e. A |-> B ) ) |
23 |
22
|
3adant3 |
|- ( ( ph /\ x e. A /\ y = C ) -> B e. ran ( x e. A |-> B ) ) |
24 |
4
|
3adant3 |
|- ( ( ph /\ x e. A /\ y = C ) -> B <_ C ) |
25 |
|
id |
|- ( y = C -> y = C ) |
26 |
25
|
eqcomd |
|- ( y = C -> C = y ) |
27 |
26
|
3ad2ant3 |
|- ( ( ph /\ x e. A /\ y = C ) -> C = y ) |
28 |
24 27
|
breqtrd |
|- ( ( ph /\ x e. A /\ y = C ) -> B <_ y ) |
29 |
|
breq1 |
|- ( z = B -> ( z <_ y <-> B <_ y ) ) |
30 |
29
|
rspcev |
|- ( ( B e. ran ( x e. A |-> B ) /\ B <_ y ) -> E. z e. ran ( x e. A |-> B ) z <_ y ) |
31 |
23 28 30
|
syl2anc |
|- ( ( ph /\ x e. A /\ y = C ) -> E. z e. ran ( x e. A |-> B ) z <_ y ) |
32 |
31
|
3exp |
|- ( ph -> ( x e. A -> ( y = C -> E. z e. ran ( x e. A |-> B ) z <_ y ) ) ) |
33 |
1 19 32
|
rexlimd |
|- ( ph -> ( E. x e. A y = C -> E. z e. ran ( x e. A |-> B ) z <_ y ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ y e. ran ( x e. A |-> C ) ) -> ( E. x e. A y = C -> E. z e. ran ( x e. A |-> B ) z <_ y ) ) |
35 |
15 34
|
mpd |
|- ( ( ph /\ y e. ran ( x e. A |-> C ) ) -> E. z e. ran ( x e. A |-> B ) z <_ y ) |
36 |
5 6 8 10 35
|
infleinf2 |
|- ( ph -> inf ( ran ( x e. A |-> B ) , RR* , < ) <_ inf ( ran ( x e. A |-> C ) , RR* , < ) ) |