Metamath Proof Explorer


Theorem infxrunb3

Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion infxrunb3
|- ( A C_ RR* -> ( A. x e. RR E. y e. A y <_ x <-> inf ( A , RR* , < ) = -oo ) )

Proof

Step Hyp Ref Expression
1 unb2ltle
 |-  ( A C_ RR* -> ( A. w e. RR E. y e. A y < w <-> A. x e. RR E. y e. A y <_ x ) )
2 infxrunb2
 |-  ( A C_ RR* -> ( A. w e. RR E. y e. A y < w <-> inf ( A , RR* , < ) = -oo ) )
3 1 2 bitr3d
 |-  ( A C_ RR* -> ( A. x e. RR E. y e. A y <_ x <-> inf ( A , RR* , < ) = -oo ) )