Metamath Proof Explorer


Theorem infxrunb3

Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion infxrunb3 A * x y A y x sup A * < = −∞

Proof

Step Hyp Ref Expression
1 unb2ltle A * w y A y < w x y A y x
2 infxrunb2 A * w y A y < w sup A * < = −∞
3 1 2 bitr3d A * x y A y x sup A * < = −∞