Metamath Proof Explorer


Theorem infxrunb3

Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion infxrunb3 ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑦𝑥 ↔ inf ( 𝐴 , ℝ* , < ) = -∞ ) )

Proof

Step Hyp Ref Expression
1 unb2ltle ( 𝐴 ⊆ ℝ* → ( ∀ 𝑤 ∈ ℝ ∃ 𝑦𝐴 𝑦 < 𝑤 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑦𝑥 ) )
2 infxrunb2 ( 𝐴 ⊆ ℝ* → ( ∀ 𝑤 ∈ ℝ ∃ 𝑦𝐴 𝑦 < 𝑤 ↔ inf ( 𝐴 , ℝ* , < ) = -∞ ) )
3 1 2 bitr3d ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑦𝑥 ↔ inf ( 𝐴 , ℝ* , < ) = -∞ ) )