| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ⊆ ℝ* |
| 2 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 |
| 3 |
1 2
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 ⊆ ℝ* |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑦 ℝ |
| 6 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 |
| 7 |
5 6
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 |
| 8 |
4 7
|
nfan |
⊢ Ⅎ 𝑦 ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 9 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → 𝐴 ⊆ ℝ* ) |
| 10 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 11 |
10
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → -∞ ∈ ℝ* ) |
| 12 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 13 |
|
nltmnf |
⊢ ( 𝑥 ∈ ℝ* → ¬ 𝑥 < -∞ ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 < -∞ ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝐴 ⊆ ℝ* → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < -∞ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < -∞ ) |
| 17 |
|
ralimralim |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 → ∀ 𝑥 ∈ ℝ ( -∞ < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → ∀ 𝑥 ∈ ℝ ( -∞ < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 19 |
3 8 9 11 16 18
|
infxr |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → inf ( 𝐴 , ℝ* , < ) = -∞ ) |
| 20 |
19
|
ex |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 → inf ( 𝐴 , ℝ* , < ) = -∞ ) ) |
| 21 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) = -∞ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ* ) |
| 23 |
|
simpl |
⊢ ( ( inf ( 𝐴 , ℝ* , < ) = -∞ ∧ 𝑥 ∈ ℝ ) → inf ( 𝐴 , ℝ* , < ) = -∞ ) |
| 24 |
|
mnflt |
⊢ ( 𝑥 ∈ ℝ → -∞ < 𝑥 ) |
| 25 |
24
|
adantl |
⊢ ( ( inf ( 𝐴 , ℝ* , < ) = -∞ ∧ 𝑥 ∈ ℝ ) → -∞ < 𝑥 ) |
| 26 |
23 25
|
eqbrtrd |
⊢ ( ( inf ( 𝐴 , ℝ* , < ) = -∞ ∧ 𝑥 ∈ ℝ ) → inf ( 𝐴 , ℝ* , < ) < 𝑥 ) |
| 27 |
26
|
adantll |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) = -∞ ) ∧ 𝑥 ∈ ℝ ) → inf ( 𝐴 , ℝ* , < ) < 𝑥 ) |
| 28 |
|
xrltso |
⊢ < Or ℝ* |
| 29 |
28
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) = -∞ ) ∧ 𝑥 ∈ ℝ ) → < Or ℝ* ) |
| 30 |
|
xrinfmss |
⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ* ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑤 ) ) ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) = -∞ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ* ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑤 ) ) ) |
| 32 |
29 31
|
infglb |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) = -∞ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) < 𝑥 ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 33 |
22 27 32
|
mp2and |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) = -∞ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 34 |
33
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ inf ( 𝐴 , ℝ* , < ) = -∞ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 35 |
34
|
ex |
⊢ ( 𝐴 ⊆ ℝ* → ( inf ( 𝐴 , ℝ* , < ) = -∞ → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 36 |
20 35
|
impbid |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ inf ( 𝐴 , ℝ* , < ) = -∞ ) ) |