| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infxr.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
infxr.y |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
infxr.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 4 |
|
infxr.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 5 |
|
infxr.n |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ) |
| 6 |
|
infxr.e |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 7 |
6
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 8 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 9 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ ¬ 𝑥 ∈ ℝ ) ∧ 𝐵 < 𝑥 ) → 𝜑 ) |
| 10 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ ¬ 𝑥 ∈ ℝ ) ∧ 𝐵 < 𝑥 ) → 𝑥 ∈ ℝ* ) |
| 11 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ ¬ 𝑥 ∈ ℝ ) ∧ 𝐵 < 𝑥 ) → ¬ 𝑥 ∈ ℝ ) |
| 12 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 13 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝐵 < 𝑥 ) → -∞ ∈ ℝ* ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝐵 < 𝑥 ) → 𝑥 ∈ ℝ* ) |
| 15 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝐵 < 𝑥 ) → 𝐵 ∈ ℝ* ) |
| 16 |
|
mnfle |
⊢ ( 𝐵 ∈ ℝ* → -∞ ≤ 𝐵 ) |
| 17 |
4 16
|
syl |
⊢ ( 𝜑 → -∞ ≤ 𝐵 ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝐵 < 𝑥 ) → -∞ ≤ 𝐵 ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝐵 < 𝑥 ) → 𝐵 < 𝑥 ) |
| 20 |
13 15 14 18 19
|
xrlelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝐵 < 𝑥 ) → -∞ < 𝑥 ) |
| 21 |
13 14 20
|
xrgtned |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ 𝐵 < 𝑥 ) → 𝑥 ≠ -∞ ) |
| 22 |
21
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ ¬ 𝑥 ∈ ℝ ) ∧ 𝐵 < 𝑥 ) → 𝑥 ≠ -∞ ) |
| 23 |
10 11 22
|
xrnmnfpnf |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ ¬ 𝑥 ∈ ℝ ) ∧ 𝐵 < 𝑥 ) → 𝑥 = +∞ ) |
| 24 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ ¬ 𝑥 ∈ ℝ ) ∧ 𝐵 < 𝑥 ) → 𝐵 < 𝑥 ) |
| 25 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → 𝜑 ) |
| 26 |
|
id |
⊢ ( 𝐵 = -∞ → 𝐵 = -∞ ) |
| 27 |
|
1re |
⊢ 1 ∈ ℝ |
| 28 |
|
mnflt |
⊢ ( 1 ∈ ℝ → -∞ < 1 ) |
| 29 |
27 28
|
ax-mp |
⊢ -∞ < 1 |
| 30 |
26 29
|
eqbrtrdi |
⊢ ( 𝐵 = -∞ → 𝐵 < 1 ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → 𝐵 < 1 ) |
| 32 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 33 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝐵 < 𝑥 ↔ 𝐵 < 1 ) ) |
| 34 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝑦 < 𝑥 ↔ 𝑦 < 1 ) ) |
| 35 |
34
|
rexbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑦 < 1 ) ) |
| 36 |
33 35
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ↔ ( 𝐵 < 1 → ∃ 𝑦 ∈ 𝐴 𝑦 < 1 ) ) ) |
| 37 |
36
|
rspcva |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) → ( 𝐵 < 1 → ∃ 𝑦 ∈ 𝐴 𝑦 < 1 ) ) |
| 38 |
32 6 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 < 1 → ∃ 𝑦 ∈ 𝐴 𝑦 < 1 ) ) |
| 39 |
25 31 38
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 1 ) |
| 40 |
39
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝐵 = -∞ ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 1 ) |
| 41 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = +∞ |
| 42 |
2 41
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = +∞ ) |
| 43 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 44 |
43
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < 1 ) → 𝑦 ∈ ℝ* ) |
| 45 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 46 |
45
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < 1 ) → 1 ∈ ℝ* ) |
| 47 |
|
id |
⊢ ( 𝑥 = +∞ → 𝑥 = +∞ ) |
| 48 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 49 |
47 48
|
eqeltrdi |
⊢ ( 𝑥 = +∞ → 𝑥 ∈ ℝ* ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → 𝑥 ∈ ℝ* ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < 1 ) → 𝑥 ∈ ℝ* ) |
| 52 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < 1 ) → 𝑦 < 1 ) |
| 53 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 54 |
27 53
|
ax-mp |
⊢ 1 < +∞ |
| 55 |
54
|
a1i |
⊢ ( 𝑥 = +∞ → 1 < +∞ ) |
| 56 |
47
|
eqcomd |
⊢ ( 𝑥 = +∞ → +∞ = 𝑥 ) |
| 57 |
55 56
|
breqtrd |
⊢ ( 𝑥 = +∞ → 1 < 𝑥 ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → 1 < 𝑥 ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < 1 ) → 1 < 𝑥 ) |
| 60 |
44 46 51 52 59
|
xrlttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < 1 ) → 𝑦 < 𝑥 ) |
| 61 |
60
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 < 1 → 𝑦 < 𝑥 ) ) |
| 62 |
61
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → ( 𝑦 ∈ 𝐴 → ( 𝑦 < 1 → 𝑦 < 𝑥 ) ) ) |
| 63 |
42 62
|
reximdai |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → ( ∃ 𝑦 ∈ 𝐴 𝑦 < 1 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝐵 = -∞ ) → ( ∃ 𝑦 ∈ 𝐴 𝑦 < 1 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 65 |
40 64
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ) ∧ 𝐵 = -∞ ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 66 |
65
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ 𝐵 = -∞ ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 67 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = -∞ ) → 𝐵 ∈ ℝ* ) |
| 68 |
67
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → 𝐵 ∈ ℝ* ) |
| 69 |
26
|
necon3bi |
⊢ ( ¬ 𝐵 = -∞ → 𝐵 ≠ -∞ ) |
| 70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → 𝐵 ≠ -∞ ) |
| 71 |
48
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → +∞ ∈ ℝ* ) |
| 72 |
|
simpr |
⊢ ( ( 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) → 𝐵 < 𝑥 ) |
| 73 |
|
simpl |
⊢ ( ( 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) → 𝑥 = +∞ ) |
| 74 |
72 73
|
breqtrd |
⊢ ( ( 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) → 𝐵 < +∞ ) |
| 75 |
74
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) → 𝐵 < +∞ ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → 𝐵 < +∞ ) |
| 77 |
68 71 76
|
xrltned |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → 𝐵 ≠ +∞ ) |
| 78 |
68 70 77
|
xrred |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → 𝐵 ∈ ℝ ) |
| 79 |
27
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → 1 ∈ ℝ ) |
| 80 |
78 79
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ( 𝐵 + 1 ) ∈ ℝ ) |
| 81 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = -∞ ) → ∀ 𝑥 ∈ ℝ ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 82 |
81
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ∀ 𝑥 ∈ ℝ ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 83 |
80 82
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ( ( 𝐵 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) ) |
| 84 |
78
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → 𝐵 < ( 𝐵 + 1 ) ) |
| 85 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐵 + 1 ) → ( 𝐵 < 𝑥 ↔ 𝐵 < ( 𝐵 + 1 ) ) ) |
| 86 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐵 + 1 ) → ( 𝑦 < 𝑥 ↔ 𝑦 < ( 𝐵 + 1 ) ) ) |
| 87 |
86
|
rexbidv |
⊢ ( 𝑥 = ( 𝐵 + 1 ) → ( ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑦 < ( 𝐵 + 1 ) ) ) |
| 88 |
85 87
|
imbi12d |
⊢ ( 𝑥 = ( 𝐵 + 1 ) → ( ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ↔ ( 𝐵 < ( 𝐵 + 1 ) → ∃ 𝑦 ∈ 𝐴 𝑦 < ( 𝐵 + 1 ) ) ) ) |
| 89 |
88
|
rspcva |
⊢ ( ( ( 𝐵 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) → ( 𝐵 < ( 𝐵 + 1 ) → ∃ 𝑦 ∈ 𝐴 𝑦 < ( 𝐵 + 1 ) ) ) |
| 90 |
83 84 89
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ∃ 𝑦 ∈ 𝐴 𝑦 < ( 𝐵 + 1 ) ) |
| 91 |
|
nfv |
⊢ Ⅎ 𝑦 𝐵 < 𝑥 |
| 92 |
2 41 91
|
nf3an |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) |
| 93 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝐵 = -∞ |
| 94 |
92 93
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) |
| 95 |
43
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 96 |
95
|
ad4ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < ( 𝐵 + 1 ) ) → 𝑦 ∈ ℝ* ) |
| 97 |
80
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 + 1 ) ∈ ℝ ) |
| 98 |
97
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 + 1 ) ∈ ℝ* ) |
| 99 |
98
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < ( 𝐵 + 1 ) ) → ( 𝐵 + 1 ) ∈ ℝ* ) |
| 100 |
50
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) → 𝑥 ∈ ℝ* ) |
| 101 |
100
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < ( 𝐵 + 1 ) ) → 𝑥 ∈ ℝ* ) |
| 102 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < ( 𝐵 + 1 ) ) → 𝑦 < ( 𝐵 + 1 ) ) |
| 103 |
80
|
ltpnfd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ( 𝐵 + 1 ) < +∞ ) |
| 104 |
56
|
adantr |
⊢ ( ( 𝑥 = +∞ ∧ ¬ 𝐵 = -∞ ) → +∞ = 𝑥 ) |
| 105 |
104
|
3ad2antl2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → +∞ = 𝑥 ) |
| 106 |
103 105
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ( 𝐵 + 1 ) < 𝑥 ) |
| 107 |
106
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < ( 𝐵 + 1 ) ) → ( 𝐵 + 1 ) < 𝑥 ) |
| 108 |
96 99 101 102 107
|
xrlttrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 < ( 𝐵 + 1 ) ) → 𝑦 < 𝑥 ) |
| 109 |
108
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 < ( 𝐵 + 1 ) → 𝑦 < 𝑥 ) ) |
| 110 |
109
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ( 𝑦 ∈ 𝐴 → ( 𝑦 < ( 𝐵 + 1 ) → 𝑦 < 𝑥 ) ) ) |
| 111 |
94 110
|
reximdai |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ( ∃ 𝑦 ∈ 𝐴 𝑦 < ( 𝐵 + 1 ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 112 |
90 111
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) ∧ ¬ 𝐵 = -∞ ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 113 |
66 112
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ∧ 𝐵 < 𝑥 ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 114 |
9 23 24 113
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ ¬ 𝑥 ∈ ℝ ) ∧ 𝐵 < 𝑥 ) → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
| 115 |
114
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) ∧ ¬ 𝑥 ∈ ℝ ) → ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 116 |
8 115
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 117 |
116
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ* → ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) ) |
| 118 |
1 117
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ* ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 119 |
|
xrltso |
⊢ < Or ℝ* |
| 120 |
119
|
a1i |
⊢ ( ⊤ → < Or ℝ* ) |
| 121 |
120
|
eqinf |
⊢ ( ⊤ → ( ( 𝐵 ∈ ℝ* ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ∧ ∀ 𝑥 ∈ ℝ* ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) → inf ( 𝐴 , ℝ* , < ) = 𝐵 ) ) |
| 122 |
121
|
mptru |
⊢ ( ( 𝐵 ∈ ℝ* ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ∧ ∀ 𝑥 ∈ ℝ* ( 𝐵 < 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) → inf ( 𝐴 , ℝ* , < ) = 𝐵 ) |
| 123 |
4 5 118 122
|
syl3anc |
⊢ ( 𝜑 → inf ( 𝐴 , ℝ* , < ) = 𝐵 ) |