| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infxr.x |
|- F/ x ph |
| 2 |
|
infxr.y |
|- F/ y ph |
| 3 |
|
infxr.a |
|- ( ph -> A C_ RR* ) |
| 4 |
|
infxr.b |
|- ( ph -> B e. RR* ) |
| 5 |
|
infxr.n |
|- ( ph -> A. x e. A -. x < B ) |
| 6 |
|
infxr.e |
|- ( ph -> A. x e. RR ( B < x -> E. y e. A y < x ) ) |
| 7 |
6
|
r19.21bi |
|- ( ( ph /\ x e. RR ) -> ( B < x -> E. y e. A y < x ) ) |
| 8 |
7
|
adantlr |
|- ( ( ( ph /\ x e. RR* ) /\ x e. RR ) -> ( B < x -> E. y e. A y < x ) ) |
| 9 |
|
simplll |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. x e. RR ) /\ B < x ) -> ph ) |
| 10 |
|
simpllr |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. x e. RR ) /\ B < x ) -> x e. RR* ) |
| 11 |
|
simplr |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. x e. RR ) /\ B < x ) -> -. x e. RR ) |
| 12 |
|
mnfxr |
|- -oo e. RR* |
| 13 |
12
|
a1i |
|- ( ( ( ph /\ x e. RR* ) /\ B < x ) -> -oo e. RR* ) |
| 14 |
|
simplr |
|- ( ( ( ph /\ x e. RR* ) /\ B < x ) -> x e. RR* ) |
| 15 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. RR* ) /\ B < x ) -> B e. RR* ) |
| 16 |
|
mnfle |
|- ( B e. RR* -> -oo <_ B ) |
| 17 |
4 16
|
syl |
|- ( ph -> -oo <_ B ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( ph /\ x e. RR* ) /\ B < x ) -> -oo <_ B ) |
| 19 |
|
simpr |
|- ( ( ( ph /\ x e. RR* ) /\ B < x ) -> B < x ) |
| 20 |
13 15 14 18 19
|
xrlelttrd |
|- ( ( ( ph /\ x e. RR* ) /\ B < x ) -> -oo < x ) |
| 21 |
13 14 20
|
xrgtned |
|- ( ( ( ph /\ x e. RR* ) /\ B < x ) -> x =/= -oo ) |
| 22 |
21
|
adantlr |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. x e. RR ) /\ B < x ) -> x =/= -oo ) |
| 23 |
10 11 22
|
xrnmnfpnf |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. x e. RR ) /\ B < x ) -> x = +oo ) |
| 24 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. x e. RR ) /\ B < x ) -> B < x ) |
| 25 |
|
simpl |
|- ( ( ph /\ B = -oo ) -> ph ) |
| 26 |
|
id |
|- ( B = -oo -> B = -oo ) |
| 27 |
|
1re |
|- 1 e. RR |
| 28 |
|
mnflt |
|- ( 1 e. RR -> -oo < 1 ) |
| 29 |
27 28
|
ax-mp |
|- -oo < 1 |
| 30 |
26 29
|
eqbrtrdi |
|- ( B = -oo -> B < 1 ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ B = -oo ) -> B < 1 ) |
| 32 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 33 |
|
breq2 |
|- ( x = 1 -> ( B < x <-> B < 1 ) ) |
| 34 |
|
breq2 |
|- ( x = 1 -> ( y < x <-> y < 1 ) ) |
| 35 |
34
|
rexbidv |
|- ( x = 1 -> ( E. y e. A y < x <-> E. y e. A y < 1 ) ) |
| 36 |
33 35
|
imbi12d |
|- ( x = 1 -> ( ( B < x -> E. y e. A y < x ) <-> ( B < 1 -> E. y e. A y < 1 ) ) ) |
| 37 |
36
|
rspcva |
|- ( ( 1 e. RR /\ A. x e. RR ( B < x -> E. y e. A y < x ) ) -> ( B < 1 -> E. y e. A y < 1 ) ) |
| 38 |
32 6 37
|
syl2anc |
|- ( ph -> ( B < 1 -> E. y e. A y < 1 ) ) |
| 39 |
25 31 38
|
sylc |
|- ( ( ph /\ B = -oo ) -> E. y e. A y < 1 ) |
| 40 |
39
|
adantlr |
|- ( ( ( ph /\ x = +oo ) /\ B = -oo ) -> E. y e. A y < 1 ) |
| 41 |
|
nfv |
|- F/ y x = +oo |
| 42 |
2 41
|
nfan |
|- F/ y ( ph /\ x = +oo ) |
| 43 |
3
|
sselda |
|- ( ( ph /\ y e. A ) -> y e. RR* ) |
| 44 |
43
|
ad4ant13 |
|- ( ( ( ( ph /\ x = +oo ) /\ y e. A ) /\ y < 1 ) -> y e. RR* ) |
| 45 |
|
1xr |
|- 1 e. RR* |
| 46 |
45
|
a1i |
|- ( ( ( ( ph /\ x = +oo ) /\ y e. A ) /\ y < 1 ) -> 1 e. RR* ) |
| 47 |
|
id |
|- ( x = +oo -> x = +oo ) |
| 48 |
|
pnfxr |
|- +oo e. RR* |
| 49 |
47 48
|
eqeltrdi |
|- ( x = +oo -> x e. RR* ) |
| 50 |
49
|
adantl |
|- ( ( ph /\ x = +oo ) -> x e. RR* ) |
| 51 |
50
|
ad2antrr |
|- ( ( ( ( ph /\ x = +oo ) /\ y e. A ) /\ y < 1 ) -> x e. RR* ) |
| 52 |
|
simpr |
|- ( ( ( ( ph /\ x = +oo ) /\ y e. A ) /\ y < 1 ) -> y < 1 ) |
| 53 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
| 54 |
27 53
|
ax-mp |
|- 1 < +oo |
| 55 |
54
|
a1i |
|- ( x = +oo -> 1 < +oo ) |
| 56 |
47
|
eqcomd |
|- ( x = +oo -> +oo = x ) |
| 57 |
55 56
|
breqtrd |
|- ( x = +oo -> 1 < x ) |
| 58 |
57
|
adantl |
|- ( ( ph /\ x = +oo ) -> 1 < x ) |
| 59 |
58
|
ad2antrr |
|- ( ( ( ( ph /\ x = +oo ) /\ y e. A ) /\ y < 1 ) -> 1 < x ) |
| 60 |
44 46 51 52 59
|
xrlttrd |
|- ( ( ( ( ph /\ x = +oo ) /\ y e. A ) /\ y < 1 ) -> y < x ) |
| 61 |
60
|
ex |
|- ( ( ( ph /\ x = +oo ) /\ y e. A ) -> ( y < 1 -> y < x ) ) |
| 62 |
61
|
ex |
|- ( ( ph /\ x = +oo ) -> ( y e. A -> ( y < 1 -> y < x ) ) ) |
| 63 |
42 62
|
reximdai |
|- ( ( ph /\ x = +oo ) -> ( E. y e. A y < 1 -> E. y e. A y < x ) ) |
| 64 |
63
|
adantr |
|- ( ( ( ph /\ x = +oo ) /\ B = -oo ) -> ( E. y e. A y < 1 -> E. y e. A y < x ) ) |
| 65 |
40 64
|
mpd |
|- ( ( ( ph /\ x = +oo ) /\ B = -oo ) -> E. y e. A y < x ) |
| 66 |
65
|
3adantl3 |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ B = -oo ) -> E. y e. A y < x ) |
| 67 |
4
|
adantr |
|- ( ( ph /\ -. B = -oo ) -> B e. RR* ) |
| 68 |
67
|
3ad2antl1 |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> B e. RR* ) |
| 69 |
26
|
necon3bi |
|- ( -. B = -oo -> B =/= -oo ) |
| 70 |
69
|
adantl |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> B =/= -oo ) |
| 71 |
48
|
a1i |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> +oo e. RR* ) |
| 72 |
|
simpr |
|- ( ( x = +oo /\ B < x ) -> B < x ) |
| 73 |
|
simpl |
|- ( ( x = +oo /\ B < x ) -> x = +oo ) |
| 74 |
72 73
|
breqtrd |
|- ( ( x = +oo /\ B < x ) -> B < +oo ) |
| 75 |
74
|
3adant1 |
|- ( ( ph /\ x = +oo /\ B < x ) -> B < +oo ) |
| 76 |
75
|
adantr |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> B < +oo ) |
| 77 |
68 71 76
|
xrltned |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> B =/= +oo ) |
| 78 |
68 70 77
|
xrred |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> B e. RR ) |
| 79 |
27
|
a1i |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> 1 e. RR ) |
| 80 |
78 79
|
readdcld |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> ( B + 1 ) e. RR ) |
| 81 |
6
|
adantr |
|- ( ( ph /\ -. B = -oo ) -> A. x e. RR ( B < x -> E. y e. A y < x ) ) |
| 82 |
81
|
3ad2antl1 |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> A. x e. RR ( B < x -> E. y e. A y < x ) ) |
| 83 |
80 82
|
jca |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> ( ( B + 1 ) e. RR /\ A. x e. RR ( B < x -> E. y e. A y < x ) ) ) |
| 84 |
78
|
ltp1d |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> B < ( B + 1 ) ) |
| 85 |
|
breq2 |
|- ( x = ( B + 1 ) -> ( B < x <-> B < ( B + 1 ) ) ) |
| 86 |
|
breq2 |
|- ( x = ( B + 1 ) -> ( y < x <-> y < ( B + 1 ) ) ) |
| 87 |
86
|
rexbidv |
|- ( x = ( B + 1 ) -> ( E. y e. A y < x <-> E. y e. A y < ( B + 1 ) ) ) |
| 88 |
85 87
|
imbi12d |
|- ( x = ( B + 1 ) -> ( ( B < x -> E. y e. A y < x ) <-> ( B < ( B + 1 ) -> E. y e. A y < ( B + 1 ) ) ) ) |
| 89 |
88
|
rspcva |
|- ( ( ( B + 1 ) e. RR /\ A. x e. RR ( B < x -> E. y e. A y < x ) ) -> ( B < ( B + 1 ) -> E. y e. A y < ( B + 1 ) ) ) |
| 90 |
83 84 89
|
sylc |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> E. y e. A y < ( B + 1 ) ) |
| 91 |
|
nfv |
|- F/ y B < x |
| 92 |
2 41 91
|
nf3an |
|- F/ y ( ph /\ x = +oo /\ B < x ) |
| 93 |
|
nfv |
|- F/ y -. B = -oo |
| 94 |
92 93
|
nfan |
|- F/ y ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) |
| 95 |
43
|
3ad2antl1 |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ y e. A ) -> y e. RR* ) |
| 96 |
95
|
ad4ant13 |
|- ( ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) /\ y < ( B + 1 ) ) -> y e. RR* ) |
| 97 |
80
|
adantr |
|- ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) -> ( B + 1 ) e. RR ) |
| 98 |
97
|
rexrd |
|- ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) -> ( B + 1 ) e. RR* ) |
| 99 |
98
|
adantr |
|- ( ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) /\ y < ( B + 1 ) ) -> ( B + 1 ) e. RR* ) |
| 100 |
50
|
3adant3 |
|- ( ( ph /\ x = +oo /\ B < x ) -> x e. RR* ) |
| 101 |
100
|
ad3antrrr |
|- ( ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) /\ y < ( B + 1 ) ) -> x e. RR* ) |
| 102 |
|
simpr |
|- ( ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) /\ y < ( B + 1 ) ) -> y < ( B + 1 ) ) |
| 103 |
80
|
ltpnfd |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> ( B + 1 ) < +oo ) |
| 104 |
56
|
adantr |
|- ( ( x = +oo /\ -. B = -oo ) -> +oo = x ) |
| 105 |
104
|
3ad2antl2 |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> +oo = x ) |
| 106 |
103 105
|
breqtrd |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> ( B + 1 ) < x ) |
| 107 |
106
|
ad2antrr |
|- ( ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) /\ y < ( B + 1 ) ) -> ( B + 1 ) < x ) |
| 108 |
96 99 101 102 107
|
xrlttrd |
|- ( ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) /\ y < ( B + 1 ) ) -> y < x ) |
| 109 |
108
|
ex |
|- ( ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) /\ y e. A ) -> ( y < ( B + 1 ) -> y < x ) ) |
| 110 |
109
|
ex |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> ( y e. A -> ( y < ( B + 1 ) -> y < x ) ) ) |
| 111 |
94 110
|
reximdai |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> ( E. y e. A y < ( B + 1 ) -> E. y e. A y < x ) ) |
| 112 |
90 111
|
mpd |
|- ( ( ( ph /\ x = +oo /\ B < x ) /\ -. B = -oo ) -> E. y e. A y < x ) |
| 113 |
66 112
|
pm2.61dan |
|- ( ( ph /\ x = +oo /\ B < x ) -> E. y e. A y < x ) |
| 114 |
9 23 24 113
|
syl3anc |
|- ( ( ( ( ph /\ x e. RR* ) /\ -. x e. RR ) /\ B < x ) -> E. y e. A y < x ) |
| 115 |
114
|
ex |
|- ( ( ( ph /\ x e. RR* ) /\ -. x e. RR ) -> ( B < x -> E. y e. A y < x ) ) |
| 116 |
8 115
|
pm2.61dan |
|- ( ( ph /\ x e. RR* ) -> ( B < x -> E. y e. A y < x ) ) |
| 117 |
116
|
ex |
|- ( ph -> ( x e. RR* -> ( B < x -> E. y e. A y < x ) ) ) |
| 118 |
1 117
|
ralrimi |
|- ( ph -> A. x e. RR* ( B < x -> E. y e. A y < x ) ) |
| 119 |
|
xrltso |
|- < Or RR* |
| 120 |
119
|
a1i |
|- ( T. -> < Or RR* ) |
| 121 |
120
|
eqinf |
|- ( T. -> ( ( B e. RR* /\ A. x e. A -. x < B /\ A. x e. RR* ( B < x -> E. y e. A y < x ) ) -> inf ( A , RR* , < ) = B ) ) |
| 122 |
121
|
mptru |
|- ( ( B e. RR* /\ A. x e. A -. x < B /\ A. x e. RR* ( B < x -> E. y e. A y < x ) ) -> inf ( A , RR* , < ) = B ) |
| 123 |
4 5 118 122
|
syl3anc |
|- ( ph -> inf ( A , RR* , < ) = B ) |