Metamath Proof Explorer


Theorem infxr

Description: The infimum of a set of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses infxr.x x φ
infxr.y y φ
infxr.a φ A *
infxr.b φ B *
infxr.n φ x A ¬ x < B
infxr.e φ x B < x y A y < x
Assertion infxr φ sup A * < = B

Proof

Step Hyp Ref Expression
1 infxr.x x φ
2 infxr.y y φ
3 infxr.a φ A *
4 infxr.b φ B *
5 infxr.n φ x A ¬ x < B
6 infxr.e φ x B < x y A y < x
7 6 r19.21bi φ x B < x y A y < x
8 7 adantlr φ x * x B < x y A y < x
9 simplll φ x * ¬ x B < x φ
10 simpllr φ x * ¬ x B < x x *
11 simplr φ x * ¬ x B < x ¬ x
12 mnfxr −∞ *
13 12 a1i φ x * B < x −∞ *
14 simplr φ x * B < x x *
15 4 ad2antrr φ x * B < x B *
16 mnfle B * −∞ B
17 4 16 syl φ −∞ B
18 17 ad2antrr φ x * B < x −∞ B
19 simpr φ x * B < x B < x
20 13 15 14 18 19 xrlelttrd φ x * B < x −∞ < x
21 13 14 20 xrgtned φ x * B < x x −∞
22 21 adantlr φ x * ¬ x B < x x −∞
23 10 11 22 xrnmnfpnf φ x * ¬ x B < x x = +∞
24 simpr φ x * ¬ x B < x B < x
25 simpl φ B = −∞ φ
26 id B = −∞ B = −∞
27 1re 1
28 mnflt 1 −∞ < 1
29 27 28 ax-mp −∞ < 1
30 26 29 eqbrtrdi B = −∞ B < 1
31 30 adantl φ B = −∞ B < 1
32 1red φ 1
33 breq2 x = 1 B < x B < 1
34 breq2 x = 1 y < x y < 1
35 34 rexbidv x = 1 y A y < x y A y < 1
36 33 35 imbi12d x = 1 B < x y A y < x B < 1 y A y < 1
37 36 rspcva 1 x B < x y A y < x B < 1 y A y < 1
38 32 6 37 syl2anc φ B < 1 y A y < 1
39 25 31 38 sylc φ B = −∞ y A y < 1
40 39 adantlr φ x = +∞ B = −∞ y A y < 1
41 nfv y x = +∞
42 2 41 nfan y φ x = +∞
43 3 sselda φ y A y *
44 43 ad4ant13 φ x = +∞ y A y < 1 y *
45 1xr 1 *
46 45 a1i φ x = +∞ y A y < 1 1 *
47 id x = +∞ x = +∞
48 pnfxr +∞ *
49 47 48 eqeltrdi x = +∞ x *
50 49 adantl φ x = +∞ x *
51 50 ad2antrr φ x = +∞ y A y < 1 x *
52 simpr φ x = +∞ y A y < 1 y < 1
53 ltpnf 1 1 < +∞
54 27 53 ax-mp 1 < +∞
55 54 a1i x = +∞ 1 < +∞
56 47 eqcomd x = +∞ +∞ = x
57 55 56 breqtrd x = +∞ 1 < x
58 57 adantl φ x = +∞ 1 < x
59 58 ad2antrr φ x = +∞ y A y < 1 1 < x
60 44 46 51 52 59 xrlttrd φ x = +∞ y A y < 1 y < x
61 60 ex φ x = +∞ y A y < 1 y < x
62 61 ex φ x = +∞ y A y < 1 y < x
63 42 62 reximdai φ x = +∞ y A y < 1 y A y < x
64 63 adantr φ x = +∞ B = −∞ y A y < 1 y A y < x
65 40 64 mpd φ x = +∞ B = −∞ y A y < x
66 65 3adantl3 φ x = +∞ B < x B = −∞ y A y < x
67 4 adantr φ ¬ B = −∞ B *
68 67 3ad2antl1 φ x = +∞ B < x ¬ B = −∞ B *
69 26 necon3bi ¬ B = −∞ B −∞
70 69 adantl φ x = +∞ B < x ¬ B = −∞ B −∞
71 48 a1i φ x = +∞ B < x ¬ B = −∞ +∞ *
72 simpr x = +∞ B < x B < x
73 simpl x = +∞ B < x x = +∞
74 72 73 breqtrd x = +∞ B < x B < +∞
75 74 3adant1 φ x = +∞ B < x B < +∞
76 75 adantr φ x = +∞ B < x ¬ B = −∞ B < +∞
77 68 71 76 xrltned φ x = +∞ B < x ¬ B = −∞ B +∞
78 68 70 77 xrred φ x = +∞ B < x ¬ B = −∞ B
79 27 a1i φ x = +∞ B < x ¬ B = −∞ 1
80 78 79 readdcld φ x = +∞ B < x ¬ B = −∞ B + 1
81 6 adantr φ ¬ B = −∞ x B < x y A y < x
82 81 3ad2antl1 φ x = +∞ B < x ¬ B = −∞ x B < x y A y < x
83 80 82 jca φ x = +∞ B < x ¬ B = −∞ B + 1 x B < x y A y < x
84 78 ltp1d φ x = +∞ B < x ¬ B = −∞ B < B + 1
85 breq2 x = B + 1 B < x B < B + 1
86 breq2 x = B + 1 y < x y < B + 1
87 86 rexbidv x = B + 1 y A y < x y A y < B + 1
88 85 87 imbi12d x = B + 1 B < x y A y < x B < B + 1 y A y < B + 1
89 88 rspcva B + 1 x B < x y A y < x B < B + 1 y A y < B + 1
90 83 84 89 sylc φ x = +∞ B < x ¬ B = −∞ y A y < B + 1
91 nfv y B < x
92 2 41 91 nf3an y φ x = +∞ B < x
93 nfv y ¬ B = −∞
94 92 93 nfan y φ x = +∞ B < x ¬ B = −∞
95 43 3ad2antl1 φ x = +∞ B < x y A y *
96 95 ad4ant13 φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 y *
97 80 adantr φ x = +∞ B < x ¬ B = −∞ y A B + 1
98 97 rexrd φ x = +∞ B < x ¬ B = −∞ y A B + 1 *
99 98 adantr φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 B + 1 *
100 50 3adant3 φ x = +∞ B < x x *
101 100 ad3antrrr φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 x *
102 simpr φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 y < B + 1
103 80 ltpnfd φ x = +∞ B < x ¬ B = −∞ B + 1 < +∞
104 56 adantr x = +∞ ¬ B = −∞ +∞ = x
105 104 3ad2antl2 φ x = +∞ B < x ¬ B = −∞ +∞ = x
106 103 105 breqtrd φ x = +∞ B < x ¬ B = −∞ B + 1 < x
107 106 ad2antrr φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 B + 1 < x
108 96 99 101 102 107 xrlttrd φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 y < x
109 108 ex φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 y < x
110 109 ex φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 y < x
111 94 110 reximdai φ x = +∞ B < x ¬ B = −∞ y A y < B + 1 y A y < x
112 90 111 mpd φ x = +∞ B < x ¬ B = −∞ y A y < x
113 66 112 pm2.61dan φ x = +∞ B < x y A y < x
114 9 23 24 113 syl3anc φ x * ¬ x B < x y A y < x
115 114 ex φ x * ¬ x B < x y A y < x
116 8 115 pm2.61dan φ x * B < x y A y < x
117 116 ex φ x * B < x y A y < x
118 1 117 ralrimi φ x * B < x y A y < x
119 xrltso < Or *
120 119 a1i < Or *
121 120 eqinf B * x A ¬ x < B x * B < x y A y < x sup A * < = B
122 121 mptru B * x A ¬ x < B x * B < x y A y < x sup A * < = B
123 4 5 118 122 syl3anc φ sup A * < = B