| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsuppnflem.j |
|
| 2 |
|
limsuppnflem.a |
|
| 3 |
|
limsuppnflem.f |
|
| 4 |
|
id |
|
| 5 |
|
imnan |
|
| 6 |
5
|
ralbii |
|
| 7 |
|
ralnex |
|
| 8 |
6 7
|
bitri |
|
| 9 |
8
|
rexbii |
|
| 10 |
|
rexnal |
|
| 11 |
9 10
|
bitri |
|
| 12 |
11
|
rexbii |
|
| 13 |
|
rexnal |
|
| 14 |
12 13
|
bitri |
|
| 15 |
14
|
biimpri |
|
| 16 |
|
simp1 |
|
| 17 |
|
id |
|
| 18 |
17
|
imp |
|
| 19 |
18
|
3adant1 |
|
| 20 |
3
|
ffvelcdmda |
|
| 21 |
20
|
ad4ant14 |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpllr |
|
| 24 |
|
rexr |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
20
|
ad4ant13 |
|
| 29 |
24
|
ad3antlr |
|
| 30 |
28 29
|
xrltnled |
|
| 31 |
27 30
|
mpbird |
|
| 32 |
31
|
adantllr |
|
| 33 |
22 26 32
|
xrltled |
|
| 34 |
16 19 33
|
syl2anc |
|
| 35 |
34
|
3exp |
|
| 36 |
35
|
ralimdva |
|
| 37 |
36
|
reximdva |
|
| 38 |
37
|
reximdva |
|
| 39 |
38
|
imp |
|
| 40 |
4 15 39
|
syl2an |
|
| 41 |
|
reex |
|
| 42 |
41
|
a1i |
|
| 43 |
42 2
|
ssexd |
|
| 44 |
3 43
|
fexd |
|
| 45 |
44
|
limsupcld |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
24
|
ad2antlr |
|
| 48 |
|
pnfxr |
|
| 49 |
48
|
a1i |
|
| 50 |
2
|
ad2antrr |
|
| 51 |
3
|
ad2antrr |
|
| 52 |
|
simpr |
|
| 53 |
1 50 51 47 52
|
limsupbnd1f |
|
| 54 |
|
ltpnf |
|
| 55 |
54
|
ad2antlr |
|
| 56 |
46 47 49 53 55
|
xrlelttrd |
|
| 57 |
56
|
rexlimdva2 |
|
| 58 |
57
|
imp |
|
| 59 |
40 58
|
syldan |
|
| 60 |
59
|
adantlr |
|
| 61 |
|
id |
|
| 62 |
48
|
a1i |
|
| 63 |
61 62
|
eqeltrd |
|
| 64 |
63 61
|
xreqnltd |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
adantr |
|
| 67 |
60 66
|
condan |
|
| 68 |
67
|
ex |
|
| 69 |
2
|
adantr |
|
| 70 |
3
|
adantr |
|
| 71 |
|
simpr |
|
| 72 |
1 69 70 71
|
limsuppnfd |
|
| 73 |
72
|
ex |
|
| 74 |
68 73
|
impbid |
|