Step |
Hyp |
Ref |
Expression |
1 |
|
limsuppnflem.j |
|
2 |
|
limsuppnflem.a |
|
3 |
|
limsuppnflem.f |
|
4 |
|
id |
|
5 |
|
imnan |
|
6 |
5
|
ralbii |
|
7 |
|
ralnex |
|
8 |
6 7
|
bitri |
|
9 |
8
|
rexbii |
|
10 |
|
rexnal |
|
11 |
9 10
|
bitri |
|
12 |
11
|
rexbii |
|
13 |
|
rexnal |
|
14 |
12 13
|
bitri |
|
15 |
14
|
biimpri |
|
16 |
|
simp1 |
|
17 |
|
id |
|
18 |
17
|
imp |
|
19 |
18
|
3adant1 |
|
20 |
3
|
ffvelrnda |
|
21 |
20
|
ad4ant14 |
|
22 |
21
|
adantr |
|
23 |
|
simpllr |
|
24 |
|
rexr |
|
25 |
23 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
|
simpr |
|
28 |
20
|
ad4ant13 |
|
29 |
24
|
ad3antlr |
|
30 |
28 29
|
xrltnled |
|
31 |
27 30
|
mpbird |
|
32 |
31
|
adantllr |
|
33 |
22 26 32
|
xrltled |
|
34 |
16 19 33
|
syl2anc |
|
35 |
34
|
3exp |
|
36 |
35
|
ralimdva |
|
37 |
36
|
reximdva |
|
38 |
37
|
reximdva |
|
39 |
38
|
imp |
|
40 |
4 15 39
|
syl2an |
|
41 |
|
reex |
|
42 |
41
|
a1i |
|
43 |
42 2
|
ssexd |
|
44 |
3 43
|
fexd |
|
45 |
44
|
limsupcld |
|
46 |
45
|
ad2antrr |
|
47 |
24
|
ad2antlr |
|
48 |
|
pnfxr |
|
49 |
48
|
a1i |
|
50 |
2
|
ad2antrr |
|
51 |
3
|
ad2antrr |
|
52 |
|
simpr |
|
53 |
1 50 51 47 52
|
limsupbnd1f |
|
54 |
|
ltpnf |
|
55 |
54
|
ad2antlr |
|
56 |
46 47 49 53 55
|
xrlelttrd |
|
57 |
56
|
rexlimdva2 |
|
58 |
57
|
imp |
|
59 |
40 58
|
syldan |
|
60 |
59
|
adantlr |
|
61 |
|
id |
|
62 |
48
|
a1i |
|
63 |
61 62
|
eqeltrd |
|
64 |
63 61
|
xreqnltd |
|
65 |
64
|
adantl |
|
66 |
65
|
adantr |
|
67 |
60 66
|
condan |
|
68 |
67
|
ex |
|
69 |
2
|
adantr |
|
70 |
3
|
adantr |
|
71 |
|
simpr |
|
72 |
1 69 70 71
|
limsuppnfd |
|
73 |
72
|
ex |
|
74 |
68 73
|
impbid |
|