Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
limsupcld
Next ⟩
climfv
Metamath Proof Explorer
Ascii
Unicode
Theorem
limsupcld
Description:
Closure of the superior limit.
(Contributed by
Glauco Siliprandi
, 23-Oct-2021)
Ref
Expression
Hypothesis
limsupcld.1
⊢
φ
→
F
∈
V
Assertion
limsupcld
⊢
φ
→
lim sup
⁡
F
∈
ℝ
*
Proof
Step
Hyp
Ref
Expression
1
limsupcld.1
⊢
φ
→
F
∈
V
2
limsupcl
⊢
F
∈
V
→
lim sup
⁡
F
∈
ℝ
*
3
1
2
syl
⊢
φ
→
lim sup
⁡
F
∈
ℝ
*