Metamath Proof Explorer


Theorem limsupcld

Description: Closure of the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis limsupcld.1 ( 𝜑𝐹𝑉 )
Assertion limsupcld ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 limsupcld.1 ( 𝜑𝐹𝑉 )
2 limsupcl ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
3 1 2 syl ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )