Metamath Proof Explorer


Theorem climfv

Description: The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion climfv ( 𝐹𝐴𝐴 = ( ⇝ ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐹𝐴𝐹𝐴 )
2 climrel Rel ⇝
3 2 a1i ( 𝐹𝐴 → Rel ⇝ )
4 brrelex1 ( ( Rel ⇝ ∧ 𝐹𝐴 ) → 𝐹 ∈ V )
5 3 1 4 syl2anc ( 𝐹𝐴𝐹 ∈ V )
6 brrelex2 ( ( Rel ⇝ ∧ 𝐹𝐴 ) → 𝐴 ∈ V )
7 3 1 6 syl2anc ( 𝐹𝐴𝐴 ∈ V )
8 breldmg ( ( 𝐹 ∈ V ∧ 𝐴 ∈ V ∧ 𝐹𝐴 ) → 𝐹 ∈ dom ⇝ )
9 5 7 1 8 syl3anc ( 𝐹𝐴𝐹 ∈ dom ⇝ )
10 climdm ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) )
11 9 10 sylib ( 𝐹𝐴𝐹 ⇝ ( ⇝ ‘ 𝐹 ) )
12 climuni ( ( 𝐹𝐴𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) → 𝐴 = ( ⇝ ‘ 𝐹 ) )
13 1 11 12 syl2anc ( 𝐹𝐴𝐴 = ( ⇝ ‘ 𝐹 ) )