| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ⇝ 𝐴 ) |
| 2 |
|
climrel |
⊢ Rel ⇝ |
| 3 |
2
|
a1i |
⊢ ( 𝐹 ⇝ 𝐴 → Rel ⇝ ) |
| 4 |
|
brrelex1 |
⊢ ( ( Rel ⇝ ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ∈ V ) |
| 5 |
3 1 4
|
syl2anc |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ V ) |
| 6 |
|
brrelex2 |
⊢ ( ( Rel ⇝ ∧ 𝐹 ⇝ 𝐴 ) → 𝐴 ∈ V ) |
| 7 |
3 1 6
|
syl2anc |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ V ) |
| 8 |
|
breldmg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐴 ∈ V ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ∈ dom ⇝ ) |
| 9 |
5 7 1 8
|
syl3anc |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ dom ⇝ ) |
| 10 |
|
climdm |
⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 12 |
|
climuni |
⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) → 𝐴 = ( ⇝ ‘ 𝐹 ) ) |
| 13 |
1 11 12
|
syl2anc |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 = ( ⇝ ‘ 𝐹 ) ) |