| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupval3.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
limsupval3.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
limsupval3.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 4 |
|
limsupval3.4 |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) |
| 5 |
3 2
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 6 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 7 |
6
|
limsupval |
⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 9 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) ) |
| 10 |
3
|
fimassd |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* ) |
| 11 |
|
dfss2 |
⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* ↔ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 14 |
13
|
supeq1d |
⊢ ( 𝜑 → sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 16 |
1 15
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 17 |
9 16
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = 𝐺 ) |
| 18 |
17
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran 𝐺 ) |
| 19 |
18
|
infeq1d |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 20 |
8 19
|
eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |