| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupval3.1 |
|- F/ k ph |
| 2 |
|
limsupval3.2 |
|- ( ph -> A e. V ) |
| 3 |
|
limsupval3.3 |
|- ( ph -> F : A --> RR* ) |
| 4 |
|
limsupval3.4 |
|- G = ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) |
| 5 |
3 2
|
fexd |
|- ( ph -> F e. _V ) |
| 6 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 7 |
6
|
limsupval |
|- ( F e. _V -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 8 |
5 7
|
syl |
|- ( ph -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 9 |
4
|
a1i |
|- ( ph -> G = ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) ) |
| 10 |
3
|
fimassd |
|- ( ph -> ( F " ( k [,) +oo ) ) C_ RR* ) |
| 11 |
|
dfss2 |
|- ( ( F " ( k [,) +oo ) ) C_ RR* <-> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( F " ( k [,) +oo ) ) ) |
| 12 |
10 11
|
sylib |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( F " ( k [,) +oo ) ) ) |
| 13 |
12
|
eqcomd |
|- ( ph -> ( F " ( k [,) +oo ) ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
| 14 |
13
|
supeq1d |
|- ( ph -> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) = sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ k e. RR ) -> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) = sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 16 |
1 15
|
mpteq2da |
|- ( ph -> ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 17 |
9 16
|
eqtr2d |
|- ( ph -> ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = G ) |
| 18 |
17
|
rneqd |
|- ( ph -> ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran G ) |
| 19 |
18
|
infeq1d |
|- ( ph -> inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = inf ( ran G , RR* , < ) ) |
| 20 |
8 19
|
eqtrd |
|- ( ph -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |