| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climfveqmpt2.k |
|- F/ k ph |
| 2 |
|
climfveqmpt2.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
climfveqmpt2.z |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
climfveqmpt2.a |
|- ( ph -> A e. V ) |
| 5 |
|
climfveqmpt2.c |
|- ( ph -> B e. W ) |
| 6 |
|
climfveqmpt2.s |
|- ( ph -> Z C_ A ) |
| 7 |
|
climfveqmpt2.i |
|- ( ph -> Z C_ B ) |
| 8 |
|
climfveqmpt2.b |
|- ( ( ph /\ k e. Z ) -> C e. U ) |
| 9 |
|
nfmpt1 |
|- F/_ k ( k e. A |-> C ) |
| 10 |
|
nfmpt1 |
|- F/_ k ( k e. B |-> C ) |
| 11 |
4
|
mptexd |
|- ( ph -> ( k e. A |-> C ) e. _V ) |
| 12 |
5
|
mptexd |
|- ( ph -> ( k e. B |-> C ) e. _V ) |
| 13 |
6
|
sselda |
|- ( ( ph /\ k e. Z ) -> k e. A ) |
| 14 |
|
eqid |
|- ( k e. A |-> C ) = ( k e. A |-> C ) |
| 15 |
14
|
fvmpt2 |
|- ( ( k e. A /\ C e. U ) -> ( ( k e. A |-> C ) ` k ) = C ) |
| 16 |
13 8 15
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> ( ( k e. A |-> C ) ` k ) = C ) |
| 17 |
7
|
sselda |
|- ( ( ph /\ k e. Z ) -> k e. B ) |
| 18 |
|
eqid |
|- ( k e. B |-> C ) = ( k e. B |-> C ) |
| 19 |
18
|
fvmpt2 |
|- ( ( k e. B /\ C e. U ) -> ( ( k e. B |-> C ) ` k ) = C ) |
| 20 |
17 8 19
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> ( ( k e. B |-> C ) ` k ) = C ) |
| 21 |
16 20
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( ( k e. A |-> C ) ` k ) = ( ( k e. B |-> C ) ` k ) ) |
| 22 |
1 9 10 3 11 12 2 21
|
climfveqf |
|- ( ph -> ( ~~> ` ( k e. A |-> C ) ) = ( ~~> ` ( k e. B |-> C ) ) ) |