Metamath Proof Explorer


Theorem climfveqmpt2

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climfveqmpt2.k k φ
climfveqmpt2.m φ M
climfveqmpt2.z Z = M
climfveqmpt2.a φ A V
climfveqmpt2.c φ B W
climfveqmpt2.s φ Z A
climfveqmpt2.i φ Z B
climfveqmpt2.b φ k Z C U
Assertion climfveqmpt2 φ k A C = k B C

Proof

Step Hyp Ref Expression
1 climfveqmpt2.k k φ
2 climfveqmpt2.m φ M
3 climfveqmpt2.z Z = M
4 climfveqmpt2.a φ A V
5 climfveqmpt2.c φ B W
6 climfveqmpt2.s φ Z A
7 climfveqmpt2.i φ Z B
8 climfveqmpt2.b φ k Z C U
9 nfmpt1 _ k k A C
10 nfmpt1 _ k k B C
11 4 mptexd φ k A C V
12 5 mptexd φ k B C V
13 6 sselda φ k Z k A
14 eqid k A C = k A C
15 14 fvmpt2 k A C U k A C k = C
16 13 8 15 syl2anc φ k Z k A C k = C
17 7 sselda φ k Z k B
18 eqid k B C = k B C
19 18 fvmpt2 k B C U k B C k = C
20 17 8 19 syl2anc φ k Z k B C k = C
21 16 20 eqtr4d φ k Z k A C k = k B C k
22 1 9 10 3 11 12 2 21 climfveqf φ k A C = k B C