Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climfveqmpt2.k | |
|
climfveqmpt2.m | |
||
climfveqmpt2.z | |
||
climfveqmpt2.a | |
||
climfveqmpt2.c | |
||
climfveqmpt2.s | |
||
climfveqmpt2.i | |
||
climfveqmpt2.b | |
||
Assertion | climfveqmpt2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfveqmpt2.k | |
|
2 | climfveqmpt2.m | |
|
3 | climfveqmpt2.z | |
|
4 | climfveqmpt2.a | |
|
5 | climfveqmpt2.c | |
|
6 | climfveqmpt2.s | |
|
7 | climfveqmpt2.i | |
|
8 | climfveqmpt2.b | |
|
9 | nfmpt1 | |
|
10 | nfmpt1 | |
|
11 | 4 | mptexd | |
12 | 5 | mptexd | |
13 | 6 | sselda | |
14 | eqid | |
|
15 | 14 | fvmpt2 | |
16 | 13 8 15 | syl2anc | |
17 | 7 | sselda | |
18 | eqid | |
|
19 | 18 | fvmpt2 | |
20 | 17 8 19 | syl2anc | |
21 | 16 20 | eqtr4d | |
22 | 1 9 10 3 11 12 2 21 | climfveqf | |