Metamath Proof Explorer


Theorem climfveqmpt2

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climfveqmpt2.k kφ
climfveqmpt2.m φM
climfveqmpt2.z Z=M
climfveqmpt2.a φAV
climfveqmpt2.c φBW
climfveqmpt2.s φZA
climfveqmpt2.i φZB
climfveqmpt2.b φkZCU
Assertion climfveqmpt2 φkAC=kBC

Proof

Step Hyp Ref Expression
1 climfveqmpt2.k kφ
2 climfveqmpt2.m φM
3 climfveqmpt2.z Z=M
4 climfveqmpt2.a φAV
5 climfveqmpt2.c φBW
6 climfveqmpt2.s φZA
7 climfveqmpt2.i φZB
8 climfveqmpt2.b φkZCU
9 nfmpt1 _kkAC
10 nfmpt1 _kkBC
11 4 mptexd φkACV
12 5 mptexd φkBCV
13 6 sselda φkZkA
14 eqid kAC=kAC
15 14 fvmpt2 kACUkACk=C
16 13 8 15 syl2anc φkZkACk=C
17 7 sselda φkZkB
18 eqid kBC=kBC
19 18 fvmpt2 kBCUkBCk=C
20 17 8 19 syl2anc φkZkBCk=C
21 16 20 eqtr4d φkZkACk=kBCk
22 1 9 10 3 11 12 2 21 climfveqf φkAC=kBC