Step |
Hyp |
Ref |
Expression |
1 |
|
climfveqmpt2.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climfveqmpt2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climfveqmpt2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
climfveqmpt2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
climfveqmpt2.c |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
climfveqmpt2.s |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
7 |
|
climfveqmpt2.i |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐵 ) |
8 |
|
climfveqmpt2.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ 𝑈 ) |
9 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
10 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
11 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∈ V ) |
12 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) |
13 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐴 ) |
14 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
15 |
14
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
16 |
13 8 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
17 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐵 ) |
18 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
19 |
18
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
20 |
17 8 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
21 |
16 20
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) ) |
22 |
1 9 10 3 11 12 2 21
|
climfveqf |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |