| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climfveqmpt2.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
climfveqmpt2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
climfveqmpt2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
climfveqmpt2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
climfveqmpt2.c |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 6 |
|
climfveqmpt2.s |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
| 7 |
|
climfveqmpt2.i |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐵 ) |
| 8 |
|
climfveqmpt2.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ 𝑈 ) |
| 9 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
| 10 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
| 11 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∈ V ) |
| 12 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) |
| 13 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐴 ) |
| 14 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
| 15 |
14
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 16 |
13 8 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 17 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐵 ) |
| 18 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
| 19 |
18
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 20 |
17 8 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 21 |
16 20
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑘 ) ) |
| 22 |
1 9 10 3 11 12 2 21
|
climfveqf |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |