Metamath Proof Explorer


Theorem climfveqmpt2

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climfveqmpt2.k 𝑘 𝜑
climfveqmpt2.m ( 𝜑𝑀 ∈ ℤ )
climfveqmpt2.z 𝑍 = ( ℤ𝑀 )
climfveqmpt2.a ( 𝜑𝐴𝑉 )
climfveqmpt2.c ( 𝜑𝐵𝑊 )
climfveqmpt2.s ( 𝜑𝑍𝐴 )
climfveqmpt2.i ( 𝜑𝑍𝐵 )
climfveqmpt2.b ( ( 𝜑𝑘𝑍 ) → 𝐶𝑈 )
Assertion climfveqmpt2 ( 𝜑 → ( ⇝ ‘ ( 𝑘𝐴𝐶 ) ) = ( ⇝ ‘ ( 𝑘𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 climfveqmpt2.k 𝑘 𝜑
2 climfveqmpt2.m ( 𝜑𝑀 ∈ ℤ )
3 climfveqmpt2.z 𝑍 = ( ℤ𝑀 )
4 climfveqmpt2.a ( 𝜑𝐴𝑉 )
5 climfveqmpt2.c ( 𝜑𝐵𝑊 )
6 climfveqmpt2.s ( 𝜑𝑍𝐴 )
7 climfveqmpt2.i ( 𝜑𝑍𝐵 )
8 climfveqmpt2.b ( ( 𝜑𝑘𝑍 ) → 𝐶𝑈 )
9 nfmpt1 𝑘 ( 𝑘𝐴𝐶 )
10 nfmpt1 𝑘 ( 𝑘𝐵𝐶 )
11 4 mptexd ( 𝜑 → ( 𝑘𝐴𝐶 ) ∈ V )
12 5 mptexd ( 𝜑 → ( 𝑘𝐵𝐶 ) ∈ V )
13 6 sselda ( ( 𝜑𝑘𝑍 ) → 𝑘𝐴 )
14 eqid ( 𝑘𝐴𝐶 ) = ( 𝑘𝐴𝐶 )
15 14 fvmpt2 ( ( 𝑘𝐴𝐶𝑈 ) → ( ( 𝑘𝐴𝐶 ) ‘ 𝑘 ) = 𝐶 )
16 13 8 15 syl2anc ( ( 𝜑𝑘𝑍 ) → ( ( 𝑘𝐴𝐶 ) ‘ 𝑘 ) = 𝐶 )
17 7 sselda ( ( 𝜑𝑘𝑍 ) → 𝑘𝐵 )
18 eqid ( 𝑘𝐵𝐶 ) = ( 𝑘𝐵𝐶 )
19 18 fvmpt2 ( ( 𝑘𝐵𝐶𝑈 ) → ( ( 𝑘𝐵𝐶 ) ‘ 𝑘 ) = 𝐶 )
20 17 8 19 syl2anc ( ( 𝜑𝑘𝑍 ) → ( ( 𝑘𝐵𝐶 ) ‘ 𝑘 ) = 𝐶 )
21 16 20 eqtr4d ( ( 𝜑𝑘𝑍 ) → ( ( 𝑘𝐴𝐶 ) ‘ 𝑘 ) = ( ( 𝑘𝐵𝐶 ) ‘ 𝑘 ) )
22 1 9 10 3 11 12 2 21 climfveqf ( 𝜑 → ( ⇝ ‘ ( 𝑘𝐴𝐶 ) ) = ( ⇝ ‘ ( 𝑘𝐵𝐶 ) ) )