| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
⊢ ∅ ∈ V |
| 2 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 3 |
2
|
limsupval |
⊢ ( ∅ ∈ V → ( lim sup ‘ ∅ ) = inf ( ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( lim sup ‘ ∅ ) = inf ( ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) |
| 5 |
|
0ima |
⊢ ( ∅ “ ( 𝑥 [,) +∞ ) ) = ∅ |
| 6 |
5
|
ineq1i |
⊢ ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) = ( ∅ ∩ ℝ* ) |
| 7 |
|
0in |
⊢ ( ∅ ∩ ℝ* ) = ∅ |
| 8 |
6 7
|
eqtri |
⊢ ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) = ∅ |
| 9 |
8
|
supeq1i |
⊢ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ∅ , ℝ* , < ) |
| 10 |
|
xrsup0 |
⊢ sup ( ∅ , ℝ* , < ) = -∞ |
| 11 |
9 10
|
eqtri |
⊢ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = -∞ |
| 12 |
11
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑥 ∈ ℝ ↦ -∞ ) |
| 13 |
|
ren0 |
⊢ ℝ ≠ ∅ |
| 14 |
13
|
a1i |
⊢ ( ⊤ → ℝ ≠ ∅ ) |
| 15 |
12 14
|
rnmptc |
⊢ ( ⊤ → ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = { -∞ } ) |
| 16 |
15
|
mptru |
⊢ ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = { -∞ } |
| 17 |
16
|
infeq1i |
⊢ inf ( ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( { -∞ } , ℝ* , < ) |
| 18 |
|
xrltso |
⊢ < Or ℝ* |
| 19 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 20 |
|
infsn |
⊢ ( ( < Or ℝ* ∧ -∞ ∈ ℝ* ) → inf ( { -∞ } , ℝ* , < ) = -∞ ) |
| 21 |
18 19 20
|
mp2an |
⊢ inf ( { -∞ } , ℝ* , < ) = -∞ |
| 22 |
4 17 21
|
3eqtri |
⊢ ( lim sup ‘ ∅ ) = -∞ |