Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
3 |
2
|
limsupval |
⊢ ( ∅ ∈ V → ( lim sup ‘ ∅ ) = inf ( ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
4 |
1 3
|
ax-mp |
⊢ ( lim sup ‘ ∅ ) = inf ( ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) |
5 |
|
0ima |
⊢ ( ∅ “ ( 𝑥 [,) +∞ ) ) = ∅ |
6 |
5
|
ineq1i |
⊢ ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) = ( ∅ ∩ ℝ* ) |
7 |
|
0in |
⊢ ( ∅ ∩ ℝ* ) = ∅ |
8 |
6 7
|
eqtri |
⊢ ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) = ∅ |
9 |
8
|
supeq1i |
⊢ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ∅ , ℝ* , < ) |
10 |
|
xrsup0 |
⊢ sup ( ∅ , ℝ* , < ) = -∞ |
11 |
9 10
|
eqtri |
⊢ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = -∞ |
12 |
11
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑥 ∈ ℝ ↦ -∞ ) |
13 |
|
ren0 |
⊢ ℝ ≠ ∅ |
14 |
13
|
a1i |
⊢ ( ⊤ → ℝ ≠ ∅ ) |
15 |
12 14
|
rnmptc |
⊢ ( ⊤ → ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = { -∞ } ) |
16 |
15
|
mptru |
⊢ ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = { -∞ } |
17 |
16
|
infeq1i |
⊢ inf ( ran ( 𝑥 ∈ ℝ ↦ sup ( ( ( ∅ “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( { -∞ } , ℝ* , < ) |
18 |
|
xrltso |
⊢ < Or ℝ* |
19 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
20 |
|
infsn |
⊢ ( ( < Or ℝ* ∧ -∞ ∈ ℝ* ) → inf ( { -∞ } , ℝ* , < ) = -∞ ) |
21 |
18 19 20
|
mp2an |
⊢ inf ( { -∞ } , ℝ* , < ) = -∞ |
22 |
4 17 21
|
3eqtri |
⊢ ( lim sup ‘ ∅ ) = -∞ |