Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrsup0 | ⊢ sup ( ∅ , ℝ* , < ) = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | ⊢ ∅ ⊆ ℝ* | |
| 2 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 3 | ral0 | ⊢ ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 | |
| 4 | rexr | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) | |
| 5 | nltmnf | ⊢ ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑦 ∈ ℝ → ¬ 𝑦 < -∞ ) |
| 7 | 6 | pm2.21d | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) |
| 8 | 7 | rgen | ⊢ ∀ 𝑦 ∈ ℝ ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) |
| 9 | supxr | ⊢ ( ( ( ∅ ⊆ ℝ* ∧ -∞ ∈ ℝ* ) ∧ ( ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) → sup ( ∅ , ℝ* , < ) = -∞ ) | |
| 10 | 1 2 3 8 9 | mp4an | ⊢ sup ( ∅ , ℝ* , < ) = -∞ |