Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
eqid |
|- ( x e. RR |-> sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( x e. RR |-> sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
3 |
2
|
limsupval |
|- ( (/) e. _V -> ( limsup ` (/) ) = inf ( ran ( x e. RR |-> sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
4 |
1 3
|
ax-mp |
|- ( limsup ` (/) ) = inf ( ran ( x e. RR |-> sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) |
5 |
|
0ima |
|- ( (/) " ( x [,) +oo ) ) = (/) |
6 |
5
|
ineq1i |
|- ( ( (/) " ( x [,) +oo ) ) i^i RR* ) = ( (/) i^i RR* ) |
7 |
|
0in |
|- ( (/) i^i RR* ) = (/) |
8 |
6 7
|
eqtri |
|- ( ( (/) " ( x [,) +oo ) ) i^i RR* ) = (/) |
9 |
8
|
supeq1i |
|- sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( (/) , RR* , < ) |
10 |
|
xrsup0 |
|- sup ( (/) , RR* , < ) = -oo |
11 |
9 10
|
eqtri |
|- sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) = -oo |
12 |
11
|
mpteq2i |
|- ( x e. RR |-> sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( x e. RR |-> -oo ) |
13 |
|
ren0 |
|- RR =/= (/) |
14 |
13
|
a1i |
|- ( T. -> RR =/= (/) ) |
15 |
12 14
|
rnmptc |
|- ( T. -> ran ( x e. RR |-> sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) = { -oo } ) |
16 |
15
|
mptru |
|- ran ( x e. RR |-> sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) = { -oo } |
17 |
16
|
infeq1i |
|- inf ( ran ( x e. RR |-> sup ( ( ( (/) " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = inf ( { -oo } , RR* , < ) |
18 |
|
xrltso |
|- < Or RR* |
19 |
|
mnfxr |
|- -oo e. RR* |
20 |
|
infsn |
|- ( ( < Or RR* /\ -oo e. RR* ) -> inf ( { -oo } , RR* , < ) = -oo ) |
21 |
18 19 20
|
mp2an |
|- inf ( { -oo } , RR* , < ) = -oo |
22 |
4 17 21
|
3eqtri |
|- ( limsup ` (/) ) = -oo |