Step |
Hyp |
Ref |
Expression |
1 |
|
climfveqf.p |
|- F/ k ph |
2 |
|
climfveqf.n |
|- F/_ k F |
3 |
|
climfveqf.o |
|- F/_ k G |
4 |
|
climfveqf.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
climfveqf.f |
|- ( ph -> F e. V ) |
6 |
|
climfveqf.g |
|- ( ph -> G e. W ) |
7 |
|
climfveqf.m |
|- ( ph -> M e. ZZ ) |
8 |
|
climfveqf.e |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) |
9 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
10 |
9
|
biimpi |
|- ( F e. dom ~~> -> F ~~> ( ~~> ` F ) ) |
11 |
10
|
adantl |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( ~~> ` F ) ) |
12 |
11 9
|
sylibr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
13 |
|
nfcv |
|- F/_ k j |
14 |
13
|
nfel1 |
|- F/ k j e. Z |
15 |
1 14
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
16 |
2 13
|
nffv |
|- F/_ k ( F ` j ) |
17 |
3 13
|
nffv |
|- F/_ k ( G ` j ) |
18 |
16 17
|
nfeq |
|- F/ k ( F ` j ) = ( G ` j ) |
19 |
15 18
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) |
20 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
21 |
20
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
22 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
23 |
|
fveq2 |
|- ( k = j -> ( G ` k ) = ( G ` j ) ) |
24 |
22 23
|
eqeq12d |
|- ( k = j -> ( ( F ` k ) = ( G ` k ) <-> ( F ` j ) = ( G ` j ) ) ) |
25 |
21 24
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) ) ) |
26 |
19 25 8
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) |
27 |
4 5 6 7 26
|
climeldmeq |
|- ( ph -> ( F e. dom ~~> <-> G e. dom ~~> ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> ( F e. dom ~~> <-> G e. dom ~~> ) ) |
29 |
12 28
|
mpbid |
|- ( ( ph /\ F e. dom ~~> ) -> G e. dom ~~> ) |
30 |
|
climdm |
|- ( G e. dom ~~> <-> G ~~> ( ~~> ` G ) ) |
31 |
29 30
|
sylib |
|- ( ( ph /\ F e. dom ~~> ) -> G ~~> ( ~~> ` G ) ) |
32 |
6
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> G e. W ) |
33 |
5
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. V ) |
34 |
7
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
35 |
26
|
eqcomd |
|- ( ( ph /\ j e. Z ) -> ( G ` j ) = ( F ` j ) ) |
36 |
35
|
adantlr |
|- ( ( ( ph /\ F e. dom ~~> ) /\ j e. Z ) -> ( G ` j ) = ( F ` j ) ) |
37 |
4 32 33 34 36
|
climeq |
|- ( ( ph /\ F e. dom ~~> ) -> ( G ~~> ( ~~> ` G ) <-> F ~~> ( ~~> ` G ) ) ) |
38 |
31 37
|
mpbid |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( ~~> ` G ) ) |
39 |
|
climuni |
|- ( ( F ~~> ( ~~> ` F ) /\ F ~~> ( ~~> ` G ) ) -> ( ~~> ` F ) = ( ~~> ` G ) ) |
40 |
11 38 39
|
syl2anc |
|- ( ( ph /\ F e. dom ~~> ) -> ( ~~> ` F ) = ( ~~> ` G ) ) |
41 |
|
ndmfv |
|- ( -. F e. dom ~~> -> ( ~~> ` F ) = (/) ) |
42 |
41
|
adantl |
|- ( ( ph /\ -. F e. dom ~~> ) -> ( ~~> ` F ) = (/) ) |
43 |
|
simpr |
|- ( ( ph /\ -. F e. dom ~~> ) -> -. F e. dom ~~> ) |
44 |
27
|
adantr |
|- ( ( ph /\ -. F e. dom ~~> ) -> ( F e. dom ~~> <-> G e. dom ~~> ) ) |
45 |
43 44
|
mtbid |
|- ( ( ph /\ -. F e. dom ~~> ) -> -. G e. dom ~~> ) |
46 |
|
ndmfv |
|- ( -. G e. dom ~~> -> ( ~~> ` G ) = (/) ) |
47 |
45 46
|
syl |
|- ( ( ph /\ -. F e. dom ~~> ) -> ( ~~> ` G ) = (/) ) |
48 |
42 47
|
eqtr4d |
|- ( ( ph /\ -. F e. dom ~~> ) -> ( ~~> ` F ) = ( ~~> ` G ) ) |
49 |
40 48
|
pm2.61dan |
|- ( ph -> ( ~~> ` F ) = ( ~~> ` G ) ) |