Metamath Proof Explorer


Theorem limsupval3

Description: The superior limit of an infinite sequence F of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupval3.1 kφ
limsupval3.2 φAV
limsupval3.3 φF:A*
limsupval3.4 G=ksupFk+∞*<
Assertion limsupval3 φlim supF=supranG*<

Proof

Step Hyp Ref Expression
1 limsupval3.1 kφ
2 limsupval3.2 φAV
3 limsupval3.3 φF:A*
4 limsupval3.4 G=ksupFk+∞*<
5 3 2 fexd φFV
6 eqid ksupFk+∞**<=ksupFk+∞**<
7 6 limsupval FVlim supF=supranksupFk+∞**<*<
8 5 7 syl φlim supF=supranksupFk+∞**<*<
9 4 a1i φG=ksupFk+∞*<
10 3 fimassd φFk+∞*
11 df-ss Fk+∞*Fk+∞*=Fk+∞
12 10 11 sylib φFk+∞*=Fk+∞
13 12 eqcomd φFk+∞=Fk+∞*
14 13 supeq1d φsupFk+∞*<=supFk+∞**<
15 14 adantr φksupFk+∞*<=supFk+∞**<
16 1 15 mpteq2da φksupFk+∞*<=ksupFk+∞**<
17 9 16 eqtr2d φksupFk+∞**<=G
18 17 rneqd φranksupFk+∞**<=ranG
19 18 infeq1d φsupranksupFk+∞**<*<=supranG*<
20 8 19 eqtrd φlim supF=supranG*<