Metamath Proof Explorer


Theorem xreqnltd

Description: A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses xreqnltd.1 φA*
xreqnltd.2 φA=B
Assertion xreqnltd φ¬A<B

Proof

Step Hyp Ref Expression
1 xreqnltd.1 φA*
2 xreqnltd.2 φA=B
3 2 1 eqeltrrd φB*
4 xrlttri3 A*B*A=B¬A<B¬B<A
5 1 3 4 syl2anc φA=B¬A<B¬B<A
6 2 5 mpbid φ¬A<B¬B<A
7 6 simpld φ¬A<B