Metamath Proof Explorer


Theorem limsuppnflem

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnflem.j 𝑗 𝐹
limsuppnflem.a ( 𝜑𝐴 ⊆ ℝ )
limsuppnflem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
Assertion limsuppnflem ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )

Proof

Step Hyp Ref Expression
1 limsuppnflem.j 𝑗 𝐹
2 limsuppnflem.a ( 𝜑𝐴 ⊆ ℝ )
3 limsuppnflem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
4 id ( 𝜑𝜑 )
5 imnan ( ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ¬ ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
6 5 ralbii ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ∀ 𝑗𝐴 ¬ ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
7 ralnex ( ∀ 𝑗𝐴 ¬ ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ¬ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
8 6 7 bitri ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ¬ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
9 8 rexbii ( ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ∃ 𝑘 ∈ ℝ ¬ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
10 rexnal ( ∃ 𝑘 ∈ ℝ ¬ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
11 9 10 bitri ( ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
12 11 rexbii ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
13 rexnal ( ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
14 12 13 bitri ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
15 14 biimpri ( ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) )
16 simp1 ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ∧ 𝑘𝑗 ) → ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) )
17 id ( ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) )
18 17 imp ( ( ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ∧ 𝑘𝑗 ) → ¬ 𝑥 ≤ ( 𝐹𝑗 ) )
19 18 3adant1 ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ∧ 𝑘𝑗 ) → ¬ 𝑥 ≤ ( 𝐹𝑗 ) )
20 3 ffvelrnda ( ( 𝜑𝑗𝐴 ) → ( 𝐹𝑗 ) ∈ ℝ* )
21 20 ad4ant14 ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) → ( 𝐹𝑗 ) ∈ ℝ* )
22 21 adantr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝐹𝑗 ) ∈ ℝ* )
23 simpllr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) → 𝑥 ∈ ℝ )
24 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
25 23 24 syl ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) → 𝑥 ∈ ℝ* )
26 25 adantr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → 𝑥 ∈ ℝ* )
27 simpr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ¬ 𝑥 ≤ ( 𝐹𝑗 ) )
28 20 ad4ant13 ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝐹𝑗 ) ∈ ℝ* )
29 24 ad3antlr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → 𝑥 ∈ ℝ* )
30 28 29 xrltnled ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( ( 𝐹𝑗 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) )
31 27 30 mpbird ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝐹𝑗 ) < 𝑥 )
32 31 adantllr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝐹𝑗 ) < 𝑥 )
33 22 26 32 xrltled ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝐹𝑗 ) ≤ 𝑥 )
34 16 19 33 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ≤ 𝑥 )
35 34 3exp ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) → ( ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
36 35 ralimdva ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
37 36 reximdva ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
38 37 reximdva ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
39 38 imp ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ¬ 𝑥 ≤ ( 𝐹𝑗 ) ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
40 4 15 39 syl2an ( ( 𝜑 ∧ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
41 reex ℝ ∈ V
42 41 a1i ( 𝜑 → ℝ ∈ V )
43 42 2 ssexd ( 𝜑𝐴 ∈ V )
44 3 43 fexd ( 𝜑𝐹 ∈ V )
45 44 limsupcld ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
46 45 ad2antrr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
47 24 ad2antlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → 𝑥 ∈ ℝ* )
48 pnfxr +∞ ∈ ℝ*
49 48 a1i ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → +∞ ∈ ℝ* )
50 2 ad2antrr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → 𝐴 ⊆ ℝ )
51 3 ad2antrr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → 𝐹 : 𝐴 ⟶ ℝ* )
52 simpr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
53 1 50 51 47 52 limsupbnd1f ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ( lim sup ‘ 𝐹 ) ≤ 𝑥 )
54 ltpnf ( 𝑥 ∈ ℝ → 𝑥 < +∞ )
55 54 ad2antlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → 𝑥 < +∞ )
56 46 47 49 53 55 xrlelttrd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ( lim sup ‘ 𝐹 ) < +∞ )
57 56 rexlimdva2 ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) → ( lim sup ‘ 𝐹 ) < +∞ ) )
58 57 imp ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ( lim sup ‘ 𝐹 ) < +∞ )
59 40 58 syldan ( ( 𝜑 ∧ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → ( lim sup ‘ 𝐹 ) < +∞ )
60 59 adantlr ( ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = +∞ ) ∧ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → ( lim sup ‘ 𝐹 ) < +∞ )
61 id ( ( lim sup ‘ 𝐹 ) = +∞ → ( lim sup ‘ 𝐹 ) = +∞ )
62 48 a1i ( ( lim sup ‘ 𝐹 ) = +∞ → +∞ ∈ ℝ* )
63 61 62 eqeltrd ( ( lim sup ‘ 𝐹 ) = +∞ → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
64 63 61 xreqnltd ( ( lim sup ‘ 𝐹 ) = +∞ → ¬ ( lim sup ‘ 𝐹 ) < +∞ )
65 64 adantl ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = +∞ ) → ¬ ( lim sup ‘ 𝐹 ) < +∞ )
66 65 adantr ( ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = +∞ ) ∧ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → ¬ ( lim sup ‘ 𝐹 ) < +∞ )
67 60 66 condan ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = +∞ ) → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
68 67 ex ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )
69 2 adantr ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → 𝐴 ⊆ ℝ )
70 3 adantr ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → 𝐹 : 𝐴 ⟶ ℝ* )
71 simpr ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
72 1 69 70 71 limsuppnfd ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → ( lim sup ‘ 𝐹 ) = +∞ )
73 72 ex ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) → ( lim sup ‘ 𝐹 ) = +∞ ) )
74 68 73 impbid ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )