| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsuppnflem.j |
⊢ Ⅎ 𝑗 𝐹 |
| 2 |
|
limsuppnflem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 3 |
|
limsuppnflem.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 4 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 5 |
|
imnan |
⊢ ( ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 6 |
5
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ 𝐴 ¬ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 7 |
|
ralnex |
⊢ ( ∀ 𝑗 ∈ 𝐴 ¬ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 9 |
8
|
rexbii |
⊢ ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ∃ 𝑘 ∈ ℝ ¬ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 10 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ℝ ¬ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 11 |
9 10
|
bitri |
⊢ ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 12 |
11
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 13 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 14 |
12 13
|
bitri |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 15 |
14
|
biimpri |
⊢ ( ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 16 |
|
simp1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ) |
| 17 |
|
id |
⊢ ( ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ≤ 𝑗 ) → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 19 |
18
|
3adant1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ≤ 𝑗 ) → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 20 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 21 |
20
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 23 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 24 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 26 |
25
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ∈ ℝ* ) |
| 27 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 28 |
20
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 29 |
24
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ∈ ℝ* ) |
| 30 |
28 29
|
xrltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) < 𝑥 ↔ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 31 |
27 30
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) |
| 32 |
31
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) < 𝑥 ) |
| 33 |
22 26 32
|
xrltled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 34 |
16 19 33
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 35 |
34
|
3exp |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 36 |
35
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 37 |
36
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 38 |
37
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 39 |
38
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 40 |
4 15 39
|
syl2an |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 41 |
|
reex |
⊢ ℝ ∈ V |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 43 |
42 2
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 44 |
3 43
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 45 |
44
|
limsupcld |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 47 |
24
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
| 48 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 49 |
48
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → +∞ ∈ ℝ* ) |
| 50 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → 𝐴 ⊆ ℝ ) |
| 51 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 53 |
1 50 51 47 52
|
limsupbnd1f |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ( lim sup ‘ 𝐹 ) ≤ 𝑥 ) |
| 54 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
| 55 |
54
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → 𝑥 < +∞ ) |
| 56 |
46 47 49 53 55
|
xrlelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ( lim sup ‘ 𝐹 ) < +∞ ) |
| 57 |
56
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ( lim sup ‘ 𝐹 ) < +∞ ) ) |
| 58 |
57
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ( lim sup ‘ 𝐹 ) < +∞ ) |
| 59 |
40 58
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ( lim sup ‘ 𝐹 ) < +∞ ) |
| 60 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = +∞ ) ∧ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ( lim sup ‘ 𝐹 ) < +∞ ) |
| 61 |
|
id |
⊢ ( ( lim sup ‘ 𝐹 ) = +∞ → ( lim sup ‘ 𝐹 ) = +∞ ) |
| 62 |
48
|
a1i |
⊢ ( ( lim sup ‘ 𝐹 ) = +∞ → +∞ ∈ ℝ* ) |
| 63 |
61 62
|
eqeltrd |
⊢ ( ( lim sup ‘ 𝐹 ) = +∞ → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 64 |
63 61
|
xreqnltd |
⊢ ( ( lim sup ‘ 𝐹 ) = +∞ → ¬ ( lim sup ‘ 𝐹 ) < +∞ ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = +∞ ) → ¬ ( lim sup ‘ 𝐹 ) < +∞ ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = +∞ ) ∧ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ¬ ( lim sup ‘ 𝐹 ) < +∞ ) |
| 67 |
60 66
|
condan |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) = +∞ ) → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 68 |
67
|
ex |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 69 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → 𝐴 ⊆ ℝ ) |
| 70 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 71 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 72 |
1 69 70 71
|
limsuppnfd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ( lim sup ‘ 𝐹 ) = +∞ ) |
| 73 |
72
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( lim sup ‘ 𝐹 ) = +∞ ) ) |
| 74 |
68 73
|
impbid |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |