Metamath Proof Explorer


Theorem limsupbnd1f

Description: If a sequence is eventually at most A , then the limsup is also at most A . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupbnd1f.1 𝑗 𝐹
limsupbnd1f.2 ( 𝜑𝐵 ⊆ ℝ )
limsupbnd1f.3 ( 𝜑𝐹 : 𝐵 ⟶ ℝ* )
limsupbnd1f.4 ( 𝜑𝐴 ∈ ℝ* )
limsupbnd1f.5 ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) )
Assertion limsupbnd1f ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 limsupbnd1f.1 𝑗 𝐹
2 limsupbnd1f.2 ( 𝜑𝐵 ⊆ ℝ )
3 limsupbnd1f.3 ( 𝜑𝐹 : 𝐵 ⟶ ℝ* )
4 limsupbnd1f.4 ( 𝜑𝐴 ∈ ℝ* )
5 limsupbnd1f.5 ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) )
6 breq1 ( 𝑘 = 𝑖 → ( 𝑘𝑗𝑖𝑗 ) )
7 6 imbi1d ( 𝑘 = 𝑖 → ( ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ( 𝑖𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )
8 7 ralbidv ( 𝑘 = 𝑖 → ( ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ∀ 𝑗𝐵 ( 𝑖𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )
9 nfv 𝑙 ( 𝑖𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 )
10 nfv 𝑗 𝑖𝑙
11 nfcv 𝑗 𝑙
12 1 11 nffv 𝑗 ( 𝐹𝑙 )
13 nfcv 𝑗
14 nfcv 𝑗 𝐴
15 12 13 14 nfbr 𝑗 ( 𝐹𝑙 ) ≤ 𝐴
16 10 15 nfim 𝑗 ( 𝑖𝑙 → ( 𝐹𝑙 ) ≤ 𝐴 )
17 breq2 ( 𝑗 = 𝑙 → ( 𝑖𝑗𝑖𝑙 ) )
18 fveq2 ( 𝑗 = 𝑙 → ( 𝐹𝑗 ) = ( 𝐹𝑙 ) )
19 18 breq1d ( 𝑗 = 𝑙 → ( ( 𝐹𝑗 ) ≤ 𝐴 ↔ ( 𝐹𝑙 ) ≤ 𝐴 ) )
20 17 19 imbi12d ( 𝑗 = 𝑙 → ( ( 𝑖𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ( 𝑖𝑙 → ( 𝐹𝑙 ) ≤ 𝐴 ) ) )
21 9 16 20 cbvralw ( ∀ 𝑗𝐵 ( 𝑖𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ∀ 𝑙𝐵 ( 𝑖𝑙 → ( 𝐹𝑙 ) ≤ 𝐴 ) )
22 21 a1i ( 𝑘 = 𝑖 → ( ∀ 𝑗𝐵 ( 𝑖𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ∀ 𝑙𝐵 ( 𝑖𝑙 → ( 𝐹𝑙 ) ≤ 𝐴 ) ) )
23 8 22 bitrd ( 𝑘 = 𝑖 → ( ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ∀ 𝑙𝐵 ( 𝑖𝑙 → ( 𝐹𝑙 ) ≤ 𝐴 ) ) )
24 23 cbvrexvw ( ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ∃ 𝑖 ∈ ℝ ∀ 𝑙𝐵 ( 𝑖𝑙 → ( 𝐹𝑙 ) ≤ 𝐴 ) )
25 5 24 sylib ( 𝜑 → ∃ 𝑖 ∈ ℝ ∀ 𝑙𝐵 ( 𝑖𝑙 → ( 𝐹𝑙 ) ≤ 𝐴 ) )
26 2 3 4 25 limsupbnd1 ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 )