Metamath Proof Explorer


Theorem limsuppnf

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnf.j 𝑗 𝐹
limsuppnf.a ( 𝜑𝐴 ⊆ ℝ )
limsuppnf.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
Assertion limsuppnf ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )

Proof

Step Hyp Ref Expression
1 limsuppnf.j 𝑗 𝐹
2 limsuppnf.a ( 𝜑𝐴 ⊆ ℝ )
3 limsuppnf.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
4 nfcv 𝑙 𝐹
5 4 2 3 limsuppnflem ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ ↔ ∀ 𝑦 ∈ ℝ ∀ 𝑖 ∈ ℝ ∃ 𝑙𝐴 ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ) )
6 breq1 ( 𝑖 = 𝑘 → ( 𝑖𝑙𝑘𝑙 ) )
7 6 anbi1d ( 𝑖 = 𝑘 → ( ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ( 𝑘𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ) )
8 7 rexbidv ( 𝑖 = 𝑘 → ( ∃ 𝑙𝐴 ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∃ 𝑙𝐴 ( 𝑘𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ) )
9 nfv 𝑗 𝑘𝑙
10 nfcv 𝑗 𝑦
11 nfcv 𝑗
12 nfcv 𝑗 𝑙
13 1 12 nffv 𝑗 ( 𝐹𝑙 )
14 10 11 13 nfbr 𝑗 𝑦 ≤ ( 𝐹𝑙 )
15 9 14 nfan 𝑗 ( 𝑘𝑙𝑦 ≤ ( 𝐹𝑙 ) )
16 nfv 𝑙 ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) )
17 breq2 ( 𝑙 = 𝑗 → ( 𝑘𝑙𝑘𝑗 ) )
18 fveq2 ( 𝑙 = 𝑗 → ( 𝐹𝑙 ) = ( 𝐹𝑗 ) )
19 18 breq2d ( 𝑙 = 𝑗 → ( 𝑦 ≤ ( 𝐹𝑙 ) ↔ 𝑦 ≤ ( 𝐹𝑗 ) ) )
20 17 19 anbi12d ( 𝑙 = 𝑗 → ( ( 𝑘𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) ) )
21 15 16 20 cbvrexw ( ∃ 𝑙𝐴 ( 𝑘𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∃ 𝑗𝐴 ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) )
22 21 a1i ( 𝑖 = 𝑘 → ( ∃ 𝑙𝐴 ( 𝑘𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∃ 𝑗𝐴 ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) ) )
23 8 22 bitrd ( 𝑖 = 𝑘 → ( ∃ 𝑙𝐴 ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∃ 𝑗𝐴 ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) ) )
24 23 cbvralvw ( ∀ 𝑖 ∈ ℝ ∃ 𝑙𝐴 ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) )
25 24 a1i ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ ℝ ∃ 𝑙𝐴 ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) ) )
26 breq1 ( 𝑦 = 𝑥 → ( 𝑦 ≤ ( 𝐹𝑗 ) ↔ 𝑥 ≤ ( 𝐹𝑗 ) ) )
27 26 anbi2d ( 𝑦 = 𝑥 → ( ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) ↔ ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )
28 27 rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑗𝐴 ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) ↔ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )
29 28 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑦 ≤ ( 𝐹𝑗 ) ) ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )
30 25 29 bitrd ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ ℝ ∃ 𝑙𝐴 ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )
31 30 cbvralvw ( ∀ 𝑦 ∈ ℝ ∀ 𝑖 ∈ ℝ ∃ 𝑙𝐴 ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
32 31 a1i ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∀ 𝑖 ∈ ℝ ∃ 𝑙𝐴 ( 𝑖𝑙𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )
33 5 32 bitrd ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) )