| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupubuzlem.j |
⊢ Ⅎ 𝑗 𝜑 |
| 2 |
|
limsupubuzlem.e |
⊢ Ⅎ 𝑗 𝑋 |
| 3 |
|
limsupubuzlem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
limsupubuzlem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
limsupubuzlem.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
| 6 |
|
limsupubuzlem.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 7 |
|
limsupubuzlem.k |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 8 |
|
limsupubuzlem.b |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑍 ( 𝐾 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑌 ) ) |
| 9 |
|
limsupubuzlem.n |
⊢ 𝑁 = if ( ( ⌈ ‘ 𝐾 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝐾 ) ) |
| 10 |
|
limsupubuzlem.w |
⊢ 𝑊 = sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ 𝑗 ) ) , ℝ , < ) |
| 11 |
|
limsupubuzlem.x |
⊢ 𝑋 = if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) |
| 12 |
10
|
a1i |
⊢ ( 𝜑 → 𝑊 = sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ 𝑗 ) ) , ℝ , < ) ) |
| 13 |
|
ltso |
⊢ < Or ℝ |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 15 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
| 16 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 17 |
9
|
a1i |
⊢ ( 𝜑 → 𝑁 = if ( ( ⌈ ‘ 𝐾 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝐾 ) ) ) |
| 18 |
|
ceilcl |
⊢ ( 𝐾 ∈ ℝ → ( ⌈ ‘ 𝐾 ) ∈ ℤ ) |
| 19 |
7 18
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ 𝐾 ) ∈ ℤ ) |
| 20 |
3 19
|
ifcld |
⊢ ( 𝜑 → if ( ( ⌈ ‘ 𝐾 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝐾 ) ) ∈ ℤ ) |
| 21 |
17 20
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 22 |
19
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ 𝐾 ) ∈ ℝ ) |
| 23 |
3
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 24 |
|
max2 |
⊢ ( ( ( ⌈ ‘ 𝐾 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → 𝑀 ≤ if ( ( ⌈ ‘ 𝐾 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝐾 ) ) ) |
| 25 |
22 23 24
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≤ if ( ( ⌈ ‘ 𝐾 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝐾 ) ) ) |
| 26 |
17
|
eqcomd |
⊢ ( 𝜑 → if ( ( ⌈ ‘ 𝐾 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝐾 ) ) = 𝑁 ) |
| 27 |
25 26
|
breqtrd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 28 |
16 3 21 27
|
eluzd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 29 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 30 |
28 29
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 31 |
30
|
ne0d |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ≠ ∅ ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 33 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 34 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) → 𝑗 ∈ ℤ ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑗 ∈ ℤ ) |
| 36 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ≤ 𝑗 ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝑗 ) |
| 38 |
16 33 35 37
|
eluzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 39 |
38 4
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑗 ∈ 𝑍 ) |
| 40 |
32 39
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 41 |
1 14 15 31 40
|
fisupclrnmpt |
⊢ ( 𝜑 → sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ 𝑗 ) ) , ℝ , < ) ∈ ℝ ) |
| 42 |
12 41
|
eqeltrd |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 43 |
6 42
|
ifcld |
⊢ ( 𝜑 → if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ∈ ℝ ) |
| 44 |
11 43
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 45 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 47 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑊 ∈ ℝ ) |
| 48 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑋 ∈ ℝ ) |
| 49 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝜑 ) |
| 50 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑀 ∈ ℤ ) |
| 51 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 52 |
4
|
eluzelz2 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 53 |
52
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑗 ∈ ℤ ) |
| 54 |
4
|
eleq2i |
⊢ ( 𝑗 ∈ 𝑍 ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 55 |
54
|
biimpi |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 56 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑗 ) |
| 57 |
55 56
|
syl |
⊢ ( 𝑗 ∈ 𝑍 → 𝑀 ≤ 𝑗 ) |
| 58 |
57
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑀 ≤ 𝑗 ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑗 ≤ 𝑁 ) |
| 60 |
50 51 53 58 59
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) |
| 61 |
1 15 40
|
fimaxre4 |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑏 ) |
| 62 |
1 40 61
|
suprubrnmpt |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ 𝑗 ) ) , ℝ , < ) ) |
| 63 |
62 10
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑊 ) |
| 64 |
49 60 63
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑊 ) |
| 65 |
|
max1 |
⊢ ( ( 𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → 𝑊 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
| 66 |
42 6 65
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
| 67 |
66 11
|
breqtrrdi |
⊢ ( 𝜑 → 𝑊 ≤ 𝑋 ) |
| 68 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → 𝑊 ≤ 𝑋 ) |
| 69 |
46 47 48 64 68
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 ≤ 𝑁 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) |
| 70 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → 𝐾 ∈ ℝ ) |
| 71 |
|
uzssre |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 72 |
4 71
|
eqsstri |
⊢ 𝑍 ⊆ ℝ |
| 73 |
72
|
sseli |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ ) |
| 74 |
73
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → 𝑗 ∈ ℝ ) |
| 75 |
71 28
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 76 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 77 |
|
ceilge |
⊢ ( 𝐾 ∈ ℝ → 𝐾 ≤ ( ⌈ ‘ 𝐾 ) ) |
| 78 |
7 77
|
syl |
⊢ ( 𝜑 → 𝐾 ≤ ( ⌈ ‘ 𝐾 ) ) |
| 79 |
|
max1 |
⊢ ( ( ( ⌈ ‘ 𝐾 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ⌈ ‘ 𝐾 ) ≤ if ( ( ⌈ ‘ 𝐾 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝐾 ) ) ) |
| 80 |
22 23 79
|
syl2anc |
⊢ ( 𝜑 → ( ⌈ ‘ 𝐾 ) ≤ if ( ( ⌈ ‘ 𝐾 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝐾 ) ) ) |
| 81 |
80 26
|
breqtrd |
⊢ ( 𝜑 → ( ⌈ ‘ 𝐾 ) ≤ 𝑁 ) |
| 82 |
7 22 75 78 81
|
letrd |
⊢ ( 𝜑 → 𝐾 ≤ 𝑁 ) |
| 83 |
82
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → 𝐾 ≤ 𝑁 ) |
| 84 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → ¬ 𝑗 ≤ 𝑁 ) |
| 85 |
76 74
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → ( 𝑁 < 𝑗 ↔ ¬ 𝑗 ≤ 𝑁 ) ) |
| 86 |
84 85
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → 𝑁 < 𝑗 ) |
| 87 |
70 76 74 83 86
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → 𝐾 < 𝑗 ) |
| 88 |
70 74 87
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → 𝐾 ≤ 𝑗 ) |
| 89 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 90 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑌 ∈ ℝ ) |
| 91 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑋 ∈ ℝ ) |
| 92 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐾 ≤ 𝑗 ) |
| 93 |
8
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐾 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑌 ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → ( 𝐾 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑌 ) ) |
| 95 |
92 94
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑌 ) |
| 96 |
|
max2 |
⊢ ( ( 𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → 𝑌 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
| 97 |
42 6 96
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
| 98 |
97 11
|
breqtrrdi |
⊢ ( 𝜑 → 𝑌 ≤ 𝑋 ) |
| 99 |
98
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑌 ≤ 𝑋 ) |
| 100 |
89 90 91 95 99
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) |
| 101 |
88 100
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝑗 ≤ 𝑁 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) |
| 102 |
69 101
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) |
| 103 |
102
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) ) |
| 104 |
1 103
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) |
| 105 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 |
| 106 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
| 107 |
106 2
|
nfeq |
⊢ Ⅎ 𝑗 𝑥 = 𝑋 |
| 108 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) ) |
| 109 |
107 108
|
ralbid |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) ) |
| 110 |
105 109
|
rspce |
⊢ ( ( 𝑋 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑋 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 111 |
44 104 110
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |