Step |
Hyp |
Ref |
Expression |
1 |
|
fisupclrnmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
fisupclrnmpt.r |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
3 |
|
fisupclrnmpt.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
4 |
|
fisupclrnmpt.n |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
5 |
|
fisupclrnmpt.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
7 |
1 6 5
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⊆ 𝐴 ) |
8 |
6
|
rnmptfi |
⊢ ( 𝐵 ∈ Fin → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ Fin ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ Fin ) |
10 |
1 5 6 4
|
rnmptn0 |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≠ ∅ ) |
11 |
|
fisupcl |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ Fin ∧ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≠ ∅ ∧ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⊆ 𝐴 ) ) → sup ( ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) , 𝐴 , 𝑅 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
12 |
2 9 10 7 11
|
syl13anc |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) , 𝐴 , 𝑅 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
13 |
7 12
|
sseldd |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) , 𝐴 , 𝑅 ) ∈ 𝐴 ) |