Metamath Proof Explorer


Theorem fisupclrnmpt

Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fisupclrnmpt.x x φ
fisupclrnmpt.r φ R Or A
fisupclrnmpt.b φ B Fin
fisupclrnmpt.n φ B
fisupclrnmpt.c φ x B C A
Assertion fisupclrnmpt φ sup ran x B C A R A

Proof

Step Hyp Ref Expression
1 fisupclrnmpt.x x φ
2 fisupclrnmpt.r φ R Or A
3 fisupclrnmpt.b φ B Fin
4 fisupclrnmpt.n φ B
5 fisupclrnmpt.c φ x B C A
6 eqid x B C = x B C
7 1 6 5 rnmptssd φ ran x B C A
8 6 rnmptfi B Fin ran x B C Fin
9 3 8 syl φ ran x B C Fin
10 1 5 6 4 rnmptn0 φ ran x B C
11 fisupcl R Or A ran x B C Fin ran x B C ran x B C A sup ran x B C A R ran x B C
12 2 9 10 7 11 syl13anc φ sup ran x B C A R ran x B C
13 7 12 sseldd φ sup ran x B C A R A