Metamath Proof Explorer


Theorem fimaxre4

Description: A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fimaxre4.1 𝑥 𝜑
fimaxre4.2 ( 𝜑𝐴 ∈ Fin )
fimaxre4.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion fimaxre4 ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )

Proof

Step Hyp Ref Expression
1 fimaxre4.1 𝑥 𝜑
2 fimaxre4.2 ( 𝜑𝐴 ∈ Fin )
3 fimaxre4.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 3 ex ( 𝜑 → ( 𝑥𝐴𝐵 ∈ ℝ ) )
5 1 4 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝐵 ∈ ℝ )
6 fimaxre3 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
7 2 5 6 syl2anc ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )