Metamath Proof Explorer


Theorem fimaxre4

Description: A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fimaxre4.1 x φ
fimaxre4.2 φ A Fin
fimaxre4.3 φ x A B
Assertion fimaxre4 φ y x A B y

Proof

Step Hyp Ref Expression
1 fimaxre4.1 x φ
2 fimaxre4.2 φ A Fin
3 fimaxre4.3 φ x A B
4 3 ex φ x A B
5 1 4 ralrimi φ x A B
6 fimaxre3 A Fin x A B y x A B y
7 2 5 6 syl2anc φ y x A B y