| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupubuz.j |
⊢ Ⅎ 𝑗 𝐹 |
| 2 |
|
limsupubuz.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
limsupubuz.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
| 4 |
|
limsupubuz.n |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑙 𝜑 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐹 |
| 7 |
|
uzssre |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 8 |
2 7
|
eqsstri |
⊢ 𝑍 ⊆ ℝ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑍 ⊆ ℝ ) |
| 10 |
3
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 11 |
5 6 9 10 4
|
limsupub |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∃ 𝑦 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑙 𝑀 ∈ ℤ |
| 14 |
5 13
|
nfan |
⊢ Ⅎ 𝑙 ( 𝜑 ∧ 𝑀 ∈ ℤ ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑙 𝑦 ∈ ℝ |
| 16 |
14 15
|
nfan |
⊢ Ⅎ 𝑙 ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑙 𝑘 ∈ ℝ |
| 18 |
16 17
|
nfan |
⊢ Ⅎ 𝑙 ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) |
| 19 |
|
nfra1 |
⊢ Ⅎ 𝑙 ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) |
| 20 |
18 19
|
nfan |
⊢ Ⅎ 𝑙 ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) |
| 21 |
|
nfmpt1 |
⊢ Ⅎ 𝑙 ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) |
| 22 |
21
|
nfrn |
⊢ Ⅎ 𝑙 ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) |
| 23 |
|
nfcv |
⊢ Ⅎ 𝑙 ℝ |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑙 < |
| 25 |
22 23 24
|
nfsup |
⊢ Ⅎ 𝑙 sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑙 ≤ |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑙 𝑦 |
| 28 |
25 26 27
|
nfbr |
⊢ Ⅎ 𝑙 sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) ≤ 𝑦 |
| 29 |
28 27 25
|
nfif |
⊢ Ⅎ 𝑙 if ( sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) ≤ 𝑦 , 𝑦 , sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) ) |
| 30 |
|
breq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝑘 ≤ 𝑙 ↔ 𝑘 ≤ 𝑖 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 32 |
31
|
breq1d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) |
| 33 |
30 32
|
imbi12d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ↔ ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) ) |
| 34 |
33
|
cbvralvw |
⊢ ( ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ↔ ∀ 𝑖 ∈ 𝑍 ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) |
| 35 |
34
|
biimpi |
⊢ ( ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) → ∀ 𝑖 ∈ 𝑍 ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) → ∀ 𝑖 ∈ 𝑍 ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) |
| 37 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑖 ∈ 𝑍 ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑀 ∈ ℤ ) |
| 38 |
36 37
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) → 𝑀 ∈ ℤ ) |
| 39 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑖 ∈ 𝑍 ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 40 |
36 39
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 41 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑖 ∈ 𝑍 ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 42 |
36 41
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 43 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑖 ∈ 𝑍 ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑘 ∈ ℝ ) |
| 44 |
36 43
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) → 𝑘 ∈ ℝ ) |
| 45 |
34
|
biimpri |
⊢ ( ∀ 𝑖 ∈ 𝑍 ( 𝑘 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ 𝑦 ) → ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) |
| 46 |
36 45
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) → ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) |
| 47 |
|
eqid |
⊢ if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) = if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) |
| 48 |
|
eqid |
⊢ sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) = sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) |
| 49 |
|
eqid |
⊢ if ( sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) ≤ 𝑦 , 𝑦 , sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) ) = if ( sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) ≤ 𝑦 , 𝑦 , sup ( ran ( 𝑙 ∈ ( 𝑀 ... if ( ( ⌈ ‘ 𝑘 ) ≤ 𝑀 , 𝑀 , ( ⌈ ‘ 𝑘 ) ) ) ↦ ( 𝐹 ‘ 𝑙 ) ) , ℝ , < ) ) |
| 50 |
20 29 38 2 40 42 44 46 47 48 49
|
limsupubuzlem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 51 |
50
|
rexlimdva2 |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 52 |
51
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ∃ 𝑦 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝑘 ≤ 𝑙 → ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 53 |
12 52
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 54 |
2
|
a1i |
⊢ ( ¬ 𝑀 ∈ ℤ → 𝑍 = ( ℤ≥ ‘ 𝑀 ) ) |
| 55 |
|
uz0 |
⊢ ( ¬ 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) |
| 56 |
54 55
|
eqtrd |
⊢ ( ¬ 𝑀 ∈ ℤ → 𝑍 = ∅ ) |
| 57 |
|
0red |
⊢ ( 𝑍 = ∅ → 0 ∈ ℝ ) |
| 58 |
|
rzal |
⊢ ( 𝑍 = ∅ → ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 0 ) |
| 59 |
|
brralrspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 60 |
57 58 59
|
syl2anc |
⊢ ( 𝑍 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 61 |
56 60
|
syl |
⊢ ( ¬ 𝑀 ∈ ℤ → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ℤ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 63 |
53 62
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
| 65 |
1 64
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑗 ≤ |
| 67 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
| 68 |
65 66 67
|
nfbr |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 |
| 69 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 |
| 70 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 71 |
70
|
breq1d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 72 |
68 69 71
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 73 |
72
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ 𝑍 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 74 |
63 73
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |