Step |
Hyp |
Ref |
Expression |
1 |
|
climinf2mpt.p |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
climinf2mpt.j |
⊢ Ⅎ 𝑗 𝜑 |
3 |
|
climinf2mpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
climinf2mpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
climinf2mpt.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
6 |
|
climinf2mpt.c |
⊢ ( 𝑘 = 𝑗 → 𝐵 = 𝐶 ) |
7 |
|
climinf2mpt.l |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = ( 𝑘 + 1 ) ) → 𝐶 ≤ 𝐵 ) |
8 |
|
climinf2mpt.e |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
9 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
10 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) |
11 |
1 5
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
12 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 ∈ 𝑍 |
13 |
1 12
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑘 ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 |
15 |
13 14
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
16 |
|
eleq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 + 1 ) = ( 𝑖 + 1 ) ) |
19 |
18
|
csbeq1d |
⊢ ( 𝑘 = 𝑖 → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 = ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ) |
20 |
|
eqidd |
⊢ ( 𝑘 = 𝑖 → 𝐵 = 𝐵 ) |
21 |
|
csbcow |
⊢ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑘 / 𝑘 ⦌ 𝐵 |
22 |
|
csbid |
⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐵 = 𝐵 |
23 |
21 22
|
eqtr2i |
⊢ 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
24 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐵 |
25 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
26 |
24 25 6
|
cbvcsbw |
⊢ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑗 ⦌ 𝐶 |
27 |
|
csbid |
⊢ ⦋ 𝑗 / 𝑗 ⦌ 𝐶 = 𝐶 |
28 |
26 27
|
eqtri |
⊢ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐶 |
29 |
28
|
csbeq2i |
⊢ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ 𝐶 |
30 |
23 29
|
eqtri |
⊢ 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ 𝐶 |
31 |
30
|
a1i |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) |
32 |
|
csbeq1 |
⊢ ( 𝑘 = 𝑖 → ⦋ 𝑘 / 𝑗 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
33 |
20 31 32
|
3eqtrd |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
34 |
19 33
|
breq12d |
⊢ ( 𝑘 = 𝑖 → ( ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ↔ ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) ) |
35 |
17 34
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) ) ) |
36 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝜑 ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
38 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝑍 |
40 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑘 + 1 ) = ( 𝑘 + 1 ) |
41 |
2 39 40
|
nf3an |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) |
42 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 |
43 |
|
nfcv |
⊢ Ⅎ 𝑗 ≤ |
44 |
42 43 24
|
nfbr |
⊢ Ⅎ 𝑗 ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 |
45 |
41 44
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) |
46 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
47 |
|
eqeq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 = ( 𝑘 + 1 ) ↔ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) ) |
48 |
47
|
3anbi3d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = ( 𝑘 + 1 ) ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) ) ) |
49 |
|
csbeq1a |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → 𝐶 = ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ) |
50 |
49
|
breq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐶 ≤ 𝐵 ↔ ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) ) |
51 |
48 50
|
imbi12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = ( 𝑘 + 1 ) ) → 𝐶 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) ) ) |
52 |
45 46 51 7
|
vtoclf |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) |
53 |
36 37 38 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) |
54 |
15 35 53
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
55 |
24 25 6
|
cbvcsbw |
⊢ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 |
56 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ) |
57 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ 𝑖 / 𝑗 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
58 |
56 57
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ↔ ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) ) |
59 |
54 58
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
60 |
4
|
peano2uzs |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑖 + 1 ) ∈ 𝑍 ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 + 1 ) ∈ 𝑍 ) |
62 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑖 + 1 ) ∈ 𝑍 |
63 |
1 62
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) |
64 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑖 + 1 ) |
65 |
64
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 |
66 |
65
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ |
67 |
63 66
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
68 |
|
ovex |
⊢ ( 𝑖 + 1 ) ∈ V |
69 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑘 ∈ 𝑍 ↔ ( 𝑖 + 1 ) ∈ 𝑍 ) ) |
70 |
69
|
anbi2d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) ) ) |
71 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐵 = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ) |
72 |
71
|
eleq1d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝐵 ∈ ℝ ↔ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) |
73 |
70 72
|
imbi12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) ) |
74 |
67 68 73 5
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
75 |
60 74
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
76 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) |
77 |
64 65 71 76
|
fvmptf |
⊢ ( ( ( 𝑖 + 1 ) ∈ 𝑍 ∧ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑖 + 1 ) ) = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ) |
78 |
61 75 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑖 + 1 ) ) = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ) |
79 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
80 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ∈ 𝑍 |
81 |
2 80
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
82 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑖 / 𝑗 ⦌ 𝐶 |
83 |
|
nfcv |
⊢ Ⅎ 𝑗 ℝ |
84 |
82 83
|
nfel |
⊢ Ⅎ 𝑗 ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ |
85 |
81 84
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) |
86 |
|
eleq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
87 |
86
|
anbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
88 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑖 → 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
89 |
88
|
eleq1d |
⊢ ( 𝑗 = 𝑖 → ( 𝐶 ∈ ℝ ↔ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) ) |
90 |
87 89
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) ) ) |
91 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
92 |
1 91
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
93 |
|
nfv |
⊢ Ⅎ 𝑘 𝐶 ∈ ℝ |
94 |
92 93
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
95 |
|
eleq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
96 |
95
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
97 |
6
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
98 |
96 97
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) ) ) |
99 |
94 98 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
100 |
85 90 99
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) |
101 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑖 |
102 |
|
nfcv |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑗 ⦌ 𝐶 |
103 |
101 102 33 76
|
fvmptf |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
104 |
79 100 103
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
105 |
78 104
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑖 + 1 ) ) ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ↔ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) ) |
106 |
59 105
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑖 + 1 ) ) ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) |
107 |
104 100
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℝ ) |
108 |
107
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) |
109 |
108
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) |
110 |
10 4
|
climbddf |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ∧ ∀ 𝑖 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ≤ 𝑥 ) |
111 |
3 8 109 110
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ≤ 𝑥 ) |
112 |
9 107
|
rexabsle2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ≤ 𝑥 ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ≤ 𝑥 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ) ) |
113 |
111 112
|
mpbid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ≤ 𝑥 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ) |
114 |
113
|
simprd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) |
115 |
9 10 4 3 11 106 114
|
climinf2 |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ⇝ inf ( ran ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) , ℝ* , < ) ) |