| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climinf2mpt.p |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
climinf2mpt.j |
⊢ Ⅎ 𝑗 𝜑 |
| 3 |
|
climinf2mpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
climinf2mpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
climinf2mpt.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 6 |
|
climinf2mpt.c |
⊢ ( 𝑘 = 𝑗 → 𝐵 = 𝐶 ) |
| 7 |
|
climinf2mpt.l |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = ( 𝑘 + 1 ) ) → 𝐶 ≤ 𝐵 ) |
| 8 |
|
climinf2mpt.e |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) |
| 11 |
1 5
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 ∈ 𝑍 |
| 13 |
1 12
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑘 ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 |
| 15 |
13 14
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 16 |
|
eleq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
| 17 |
16
|
anbi2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 + 1 ) = ( 𝑖 + 1 ) ) |
| 19 |
18
|
csbeq1d |
⊢ ( 𝑘 = 𝑖 → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 = ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ) |
| 20 |
|
eqidd |
⊢ ( 𝑘 = 𝑖 → 𝐵 = 𝐵 ) |
| 21 |
|
csbcow |
⊢ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑘 / 𝑘 ⦌ 𝐵 |
| 22 |
|
csbid |
⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐵 = 𝐵 |
| 23 |
21 22
|
eqtr2i |
⊢ 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐵 |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
| 26 |
24 25 6
|
cbvcsbw |
⊢ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑗 / 𝑗 ⦌ 𝐶 |
| 27 |
|
csbid |
⊢ ⦋ 𝑗 / 𝑗 ⦌ 𝐶 = 𝐶 |
| 28 |
26 27
|
eqtri |
⊢ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐶 |
| 29 |
28
|
csbeq2i |
⊢ ⦋ 𝑘 / 𝑗 ⦌ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ 𝐶 |
| 30 |
23 29
|
eqtri |
⊢ 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ 𝐶 |
| 31 |
30
|
a1i |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) |
| 32 |
|
csbeq1 |
⊢ ( 𝑘 = 𝑖 → ⦋ 𝑘 / 𝑗 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 33 |
20 31 32
|
3eqtrd |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 34 |
19 33
|
breq12d |
⊢ ( 𝑘 = 𝑖 → ( ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ↔ ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) ) |
| 35 |
17 34
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) ) ) |
| 36 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝜑 ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
| 38 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) |
| 39 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝑍 |
| 40 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑘 + 1 ) = ( 𝑘 + 1 ) |
| 41 |
2 39 40
|
nf3an |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) |
| 42 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 |
| 43 |
|
nfcv |
⊢ Ⅎ 𝑗 ≤ |
| 44 |
42 43 24
|
nfbr |
⊢ Ⅎ 𝑗 ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 |
| 45 |
41 44
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) |
| 46 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
| 47 |
|
eqeq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 = ( 𝑘 + 1 ) ↔ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) ) |
| 48 |
47
|
3anbi3d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = ( 𝑘 + 1 ) ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) ) ) |
| 49 |
|
csbeq1a |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → 𝐶 = ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ) |
| 50 |
49
|
breq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐶 ≤ 𝐵 ↔ ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) ) |
| 51 |
48 50
|
imbi12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = ( 𝑘 + 1 ) ) → 𝐶 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) ) ) |
| 52 |
45 46 51 7
|
vtoclf |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ( 𝑘 + 1 ) = ( 𝑘 + 1 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) |
| 53 |
36 37 38 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ⦋ ( 𝑘 + 1 ) / 𝑗 ⦌ 𝐶 ≤ 𝐵 ) |
| 54 |
15 35 53
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 55 |
24 25 6
|
cbvcsbw |
⊢ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 |
| 56 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ) |
| 57 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ 𝑖 / 𝑗 ⦌ 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 58 |
56 57
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ↔ ⦋ ( 𝑖 + 1 ) / 𝑗 ⦌ 𝐶 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) ) |
| 59 |
54 58
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 60 |
4
|
peano2uzs |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑖 + 1 ) ∈ 𝑍 ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 + 1 ) ∈ 𝑍 ) |
| 62 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑖 + 1 ) ∈ 𝑍 |
| 63 |
1 62
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑖 + 1 ) |
| 65 |
64
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 |
| 66 |
65
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ |
| 67 |
63 66
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 68 |
|
ovex |
⊢ ( 𝑖 + 1 ) ∈ V |
| 69 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑘 ∈ 𝑍 ↔ ( 𝑖 + 1 ) ∈ 𝑍 ) ) |
| 70 |
69
|
anbi2d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) ) ) |
| 71 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐵 = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ) |
| 72 |
71
|
eleq1d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝐵 ∈ ℝ ↔ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) |
| 73 |
70 72
|
imbi12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) ) |
| 74 |
67 68 73 5
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 75 |
60 74
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 76 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) |
| 77 |
64 65 71 76
|
fvmptf |
⊢ ( ( ( 𝑖 + 1 ) ∈ 𝑍 ∧ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑖 + 1 ) ) = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ) |
| 78 |
61 75 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑖 + 1 ) ) = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ) |
| 79 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
| 80 |
|
nfv |
⊢ Ⅎ 𝑗 𝑖 ∈ 𝑍 |
| 81 |
2 80
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
| 82 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑖 / 𝑗 ⦌ 𝐶 |
| 83 |
|
nfcv |
⊢ Ⅎ 𝑗 ℝ |
| 84 |
82 83
|
nfel |
⊢ Ⅎ 𝑗 ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ |
| 85 |
81 84
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) |
| 86 |
|
eleq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
| 87 |
86
|
anbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
| 88 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑖 → 𝐶 = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 89 |
88
|
eleq1d |
⊢ ( 𝑗 = 𝑖 → ( 𝐶 ∈ ℝ ↔ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) ) |
| 90 |
87 89
|
imbi12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) ) ) |
| 91 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
| 92 |
1 91
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
| 93 |
|
nfv |
⊢ Ⅎ 𝑘 𝐶 ∈ ℝ |
| 94 |
92 93
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 95 |
|
eleq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
| 96 |
95
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
| 97 |
6
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 98 |
96 97
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) ) ) |
| 99 |
94 98 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 100 |
85 90 99
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) |
| 101 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑖 |
| 102 |
|
nfcv |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑗 ⦌ 𝐶 |
| 103 |
101 102 33 76
|
fvmptf |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 104 |
79 100 103
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) = ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) |
| 105 |
78 104
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑖 + 1 ) ) ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ↔ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐵 ≤ ⦋ 𝑖 / 𝑗 ⦌ 𝐶 ) ) |
| 106 |
59 105
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑖 + 1 ) ) ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) |
| 107 |
104 100
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℝ ) |
| 108 |
107
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) |
| 109 |
108
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) |
| 110 |
10 4
|
climbddf |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ∈ dom ⇝ ∧ ∀ 𝑖 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ≤ 𝑥 ) |
| 111 |
3 8 109 110
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ≤ 𝑥 ) |
| 112 |
9 107
|
rexabsle2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( abs ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ≤ 𝑥 ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ≤ 𝑥 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ) ) |
| 113 |
111 112
|
mpbid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ≤ 𝑥 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) ) |
| 114 |
113
|
simprd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑖 ) ) |
| 115 |
9 10 4 3 11 106 114
|
climinf2 |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ⇝ inf ( ran ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) , ℝ* , < ) ) |