Metamath Proof Explorer


Theorem vtoclf

Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar . (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypotheses vtoclf.1 𝑥 𝜓
vtoclf.2 𝐴 ∈ V
vtoclf.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtoclf.4 𝜑
Assertion vtoclf 𝜓

Proof

Step Hyp Ref Expression
1 vtoclf.1 𝑥 𝜓
2 vtoclf.2 𝐴 ∈ V
3 vtoclf.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 vtoclf.4 𝜑
5 2 isseti 𝑥 𝑥 = 𝐴
6 3 biimpd ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
7 5 6 eximii 𝑥 ( 𝜑𝜓 )
8 1 7 19.36i ( ∀ 𝑥 𝜑𝜓 )
9 8 4 mpg 𝜓