Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. This is a
generalization of chvar . (Contributed by NM, 30-Aug-1993)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclf.1 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
vtoclf.2 |
⊢ 𝐴 ∈ V |
|
|
vtoclf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
vtoclf.4 |
⊢ 𝜑 |
|
Assertion |
vtoclf |
⊢ 𝜓 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclf.1 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
vtoclf.2 |
⊢ 𝐴 ∈ V |
3 |
|
vtoclf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
vtoclf.4 |
⊢ 𝜑 |
5 |
2
|
isseti |
⊢ ∃ 𝑥 𝑥 = 𝐴 |
6 |
3
|
biimpd |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) |
7 |
5 6
|
eximii |
⊢ ∃ 𝑥 ( 𝜑 → 𝜓 ) |
8 |
1 7
|
19.36i |
⊢ ( ∀ 𝑥 𝜑 → 𝜓 ) |
9 |
8 4
|
mpg |
⊢ 𝜓 |