Step |
Hyp |
Ref |
Expression |
1 |
|
climinf2mpt.p |
|- F/ k ph |
2 |
|
climinf2mpt.j |
|- F/ j ph |
3 |
|
climinf2mpt.m |
|- ( ph -> M e. ZZ ) |
4 |
|
climinf2mpt.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
climinf2mpt.b |
|- ( ( ph /\ k e. Z ) -> B e. RR ) |
6 |
|
climinf2mpt.c |
|- ( k = j -> B = C ) |
7 |
|
climinf2mpt.l |
|- ( ( ph /\ k e. Z /\ j = ( k + 1 ) ) -> C <_ B ) |
8 |
|
climinf2mpt.e |
|- ( ph -> ( k e. Z |-> B ) e. dom ~~> ) |
9 |
|
nfv |
|- F/ i ph |
10 |
|
nfcv |
|- F/_ i ( k e. Z |-> B ) |
11 |
1 5
|
fmptd2f |
|- ( ph -> ( k e. Z |-> B ) : Z --> RR ) |
12 |
|
nfv |
|- F/ k i e. Z |
13 |
1 12
|
nfan |
|- F/ k ( ph /\ i e. Z ) |
14 |
|
nfv |
|- F/ k [_ ( i + 1 ) / j ]_ C <_ [_ i / j ]_ C |
15 |
13 14
|
nfim |
|- F/ k ( ( ph /\ i e. Z ) -> [_ ( i + 1 ) / j ]_ C <_ [_ i / j ]_ C ) |
16 |
|
eleq1 |
|- ( k = i -> ( k e. Z <-> i e. Z ) ) |
17 |
16
|
anbi2d |
|- ( k = i -> ( ( ph /\ k e. Z ) <-> ( ph /\ i e. Z ) ) ) |
18 |
|
oveq1 |
|- ( k = i -> ( k + 1 ) = ( i + 1 ) ) |
19 |
18
|
csbeq1d |
|- ( k = i -> [_ ( k + 1 ) / j ]_ C = [_ ( i + 1 ) / j ]_ C ) |
20 |
|
eqidd |
|- ( k = i -> B = B ) |
21 |
|
csbcow |
|- [_ k / j ]_ [_ j / k ]_ B = [_ k / k ]_ B |
22 |
|
csbid |
|- [_ k / k ]_ B = B |
23 |
21 22
|
eqtr2i |
|- B = [_ k / j ]_ [_ j / k ]_ B |
24 |
|
nfcv |
|- F/_ j B |
25 |
|
nfcv |
|- F/_ k C |
26 |
24 25 6
|
cbvcsbw |
|- [_ j / k ]_ B = [_ j / j ]_ C |
27 |
|
csbid |
|- [_ j / j ]_ C = C |
28 |
26 27
|
eqtri |
|- [_ j / k ]_ B = C |
29 |
28
|
csbeq2i |
|- [_ k / j ]_ [_ j / k ]_ B = [_ k / j ]_ C |
30 |
23 29
|
eqtri |
|- B = [_ k / j ]_ C |
31 |
30
|
a1i |
|- ( k = i -> B = [_ k / j ]_ C ) |
32 |
|
csbeq1 |
|- ( k = i -> [_ k / j ]_ C = [_ i / j ]_ C ) |
33 |
20 31 32
|
3eqtrd |
|- ( k = i -> B = [_ i / j ]_ C ) |
34 |
19 33
|
breq12d |
|- ( k = i -> ( [_ ( k + 1 ) / j ]_ C <_ B <-> [_ ( i + 1 ) / j ]_ C <_ [_ i / j ]_ C ) ) |
35 |
17 34
|
imbi12d |
|- ( k = i -> ( ( ( ph /\ k e. Z ) -> [_ ( k + 1 ) / j ]_ C <_ B ) <-> ( ( ph /\ i e. Z ) -> [_ ( i + 1 ) / j ]_ C <_ [_ i / j ]_ C ) ) ) |
36 |
|
simpl |
|- ( ( ph /\ k e. Z ) -> ph ) |
37 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
38 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( k + 1 ) = ( k + 1 ) ) |
39 |
|
nfv |
|- F/ j k e. Z |
40 |
|
nfv |
|- F/ j ( k + 1 ) = ( k + 1 ) |
41 |
2 39 40
|
nf3an |
|- F/ j ( ph /\ k e. Z /\ ( k + 1 ) = ( k + 1 ) ) |
42 |
|
nfcsb1v |
|- F/_ j [_ ( k + 1 ) / j ]_ C |
43 |
|
nfcv |
|- F/_ j <_ |
44 |
42 43 24
|
nfbr |
|- F/ j [_ ( k + 1 ) / j ]_ C <_ B |
45 |
41 44
|
nfim |
|- F/ j ( ( ph /\ k e. Z /\ ( k + 1 ) = ( k + 1 ) ) -> [_ ( k + 1 ) / j ]_ C <_ B ) |
46 |
|
ovex |
|- ( k + 1 ) e. _V |
47 |
|
eqeq1 |
|- ( j = ( k + 1 ) -> ( j = ( k + 1 ) <-> ( k + 1 ) = ( k + 1 ) ) ) |
48 |
47
|
3anbi3d |
|- ( j = ( k + 1 ) -> ( ( ph /\ k e. Z /\ j = ( k + 1 ) ) <-> ( ph /\ k e. Z /\ ( k + 1 ) = ( k + 1 ) ) ) ) |
49 |
|
csbeq1a |
|- ( j = ( k + 1 ) -> C = [_ ( k + 1 ) / j ]_ C ) |
50 |
49
|
breq1d |
|- ( j = ( k + 1 ) -> ( C <_ B <-> [_ ( k + 1 ) / j ]_ C <_ B ) ) |
51 |
48 50
|
imbi12d |
|- ( j = ( k + 1 ) -> ( ( ( ph /\ k e. Z /\ j = ( k + 1 ) ) -> C <_ B ) <-> ( ( ph /\ k e. Z /\ ( k + 1 ) = ( k + 1 ) ) -> [_ ( k + 1 ) / j ]_ C <_ B ) ) ) |
52 |
45 46 51 7
|
vtoclf |
|- ( ( ph /\ k e. Z /\ ( k + 1 ) = ( k + 1 ) ) -> [_ ( k + 1 ) / j ]_ C <_ B ) |
53 |
36 37 38 52
|
syl3anc |
|- ( ( ph /\ k e. Z ) -> [_ ( k + 1 ) / j ]_ C <_ B ) |
54 |
15 35 53
|
chvarfv |
|- ( ( ph /\ i e. Z ) -> [_ ( i + 1 ) / j ]_ C <_ [_ i / j ]_ C ) |
55 |
24 25 6
|
cbvcsbw |
|- [_ ( i + 1 ) / k ]_ B = [_ ( i + 1 ) / j ]_ C |
56 |
55
|
a1i |
|- ( ( ph /\ i e. Z ) -> [_ ( i + 1 ) / k ]_ B = [_ ( i + 1 ) / j ]_ C ) |
57 |
|
eqidd |
|- ( ( ph /\ i e. Z ) -> [_ i / j ]_ C = [_ i / j ]_ C ) |
58 |
56 57
|
breq12d |
|- ( ( ph /\ i e. Z ) -> ( [_ ( i + 1 ) / k ]_ B <_ [_ i / j ]_ C <-> [_ ( i + 1 ) / j ]_ C <_ [_ i / j ]_ C ) ) |
59 |
54 58
|
mpbird |
|- ( ( ph /\ i e. Z ) -> [_ ( i + 1 ) / k ]_ B <_ [_ i / j ]_ C ) |
60 |
4
|
peano2uzs |
|- ( i e. Z -> ( i + 1 ) e. Z ) |
61 |
60
|
adantl |
|- ( ( ph /\ i e. Z ) -> ( i + 1 ) e. Z ) |
62 |
|
nfv |
|- F/ k ( i + 1 ) e. Z |
63 |
1 62
|
nfan |
|- F/ k ( ph /\ ( i + 1 ) e. Z ) |
64 |
|
nfcv |
|- F/_ k ( i + 1 ) |
65 |
64
|
nfcsb1 |
|- F/_ k [_ ( i + 1 ) / k ]_ B |
66 |
65
|
nfel1 |
|- F/ k [_ ( i + 1 ) / k ]_ B e. RR |
67 |
63 66
|
nfim |
|- F/ k ( ( ph /\ ( i + 1 ) e. Z ) -> [_ ( i + 1 ) / k ]_ B e. RR ) |
68 |
|
ovex |
|- ( i + 1 ) e. _V |
69 |
|
eleq1 |
|- ( k = ( i + 1 ) -> ( k e. Z <-> ( i + 1 ) e. Z ) ) |
70 |
69
|
anbi2d |
|- ( k = ( i + 1 ) -> ( ( ph /\ k e. Z ) <-> ( ph /\ ( i + 1 ) e. Z ) ) ) |
71 |
|
csbeq1a |
|- ( k = ( i + 1 ) -> B = [_ ( i + 1 ) / k ]_ B ) |
72 |
71
|
eleq1d |
|- ( k = ( i + 1 ) -> ( B e. RR <-> [_ ( i + 1 ) / k ]_ B e. RR ) ) |
73 |
70 72
|
imbi12d |
|- ( k = ( i + 1 ) -> ( ( ( ph /\ k e. Z ) -> B e. RR ) <-> ( ( ph /\ ( i + 1 ) e. Z ) -> [_ ( i + 1 ) / k ]_ B e. RR ) ) ) |
74 |
67 68 73 5
|
vtoclf |
|- ( ( ph /\ ( i + 1 ) e. Z ) -> [_ ( i + 1 ) / k ]_ B e. RR ) |
75 |
60 74
|
sylan2 |
|- ( ( ph /\ i e. Z ) -> [_ ( i + 1 ) / k ]_ B e. RR ) |
76 |
|
eqid |
|- ( k e. Z |-> B ) = ( k e. Z |-> B ) |
77 |
64 65 71 76
|
fvmptf |
|- ( ( ( i + 1 ) e. Z /\ [_ ( i + 1 ) / k ]_ B e. RR ) -> ( ( k e. Z |-> B ) ` ( i + 1 ) ) = [_ ( i + 1 ) / k ]_ B ) |
78 |
61 75 77
|
syl2anc |
|- ( ( ph /\ i e. Z ) -> ( ( k e. Z |-> B ) ` ( i + 1 ) ) = [_ ( i + 1 ) / k ]_ B ) |
79 |
|
simpr |
|- ( ( ph /\ i e. Z ) -> i e. Z ) |
80 |
|
nfv |
|- F/ j i e. Z |
81 |
2 80
|
nfan |
|- F/ j ( ph /\ i e. Z ) |
82 |
|
nfcsb1v |
|- F/_ j [_ i / j ]_ C |
83 |
|
nfcv |
|- F/_ j RR |
84 |
82 83
|
nfel |
|- F/ j [_ i / j ]_ C e. RR |
85 |
81 84
|
nfim |
|- F/ j ( ( ph /\ i e. Z ) -> [_ i / j ]_ C e. RR ) |
86 |
|
eleq1 |
|- ( j = i -> ( j e. Z <-> i e. Z ) ) |
87 |
86
|
anbi2d |
|- ( j = i -> ( ( ph /\ j e. Z ) <-> ( ph /\ i e. Z ) ) ) |
88 |
|
csbeq1a |
|- ( j = i -> C = [_ i / j ]_ C ) |
89 |
88
|
eleq1d |
|- ( j = i -> ( C e. RR <-> [_ i / j ]_ C e. RR ) ) |
90 |
87 89
|
imbi12d |
|- ( j = i -> ( ( ( ph /\ j e. Z ) -> C e. RR ) <-> ( ( ph /\ i e. Z ) -> [_ i / j ]_ C e. RR ) ) ) |
91 |
|
nfv |
|- F/ k j e. Z |
92 |
1 91
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
93 |
|
nfv |
|- F/ k C e. RR |
94 |
92 93
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> C e. RR ) |
95 |
|
eleq1 |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
96 |
95
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
97 |
6
|
eleq1d |
|- ( k = j -> ( B e. RR <-> C e. RR ) ) |
98 |
96 97
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> B e. RR ) <-> ( ( ph /\ j e. Z ) -> C e. RR ) ) ) |
99 |
94 98 5
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> C e. RR ) |
100 |
85 90 99
|
chvarfv |
|- ( ( ph /\ i e. Z ) -> [_ i / j ]_ C e. RR ) |
101 |
|
nfcv |
|- F/_ k i |
102 |
|
nfcv |
|- F/_ k [_ i / j ]_ C |
103 |
101 102 33 76
|
fvmptf |
|- ( ( i e. Z /\ [_ i / j ]_ C e. RR ) -> ( ( k e. Z |-> B ) ` i ) = [_ i / j ]_ C ) |
104 |
79 100 103
|
syl2anc |
|- ( ( ph /\ i e. Z ) -> ( ( k e. Z |-> B ) ` i ) = [_ i / j ]_ C ) |
105 |
78 104
|
breq12d |
|- ( ( ph /\ i e. Z ) -> ( ( ( k e. Z |-> B ) ` ( i + 1 ) ) <_ ( ( k e. Z |-> B ) ` i ) <-> [_ ( i + 1 ) / k ]_ B <_ [_ i / j ]_ C ) ) |
106 |
59 105
|
mpbird |
|- ( ( ph /\ i e. Z ) -> ( ( k e. Z |-> B ) ` ( i + 1 ) ) <_ ( ( k e. Z |-> B ) ` i ) ) |
107 |
104 100
|
eqeltrd |
|- ( ( ph /\ i e. Z ) -> ( ( k e. Z |-> B ) ` i ) e. RR ) |
108 |
107
|
recnd |
|- ( ( ph /\ i e. Z ) -> ( ( k e. Z |-> B ) ` i ) e. CC ) |
109 |
108
|
ralrimiva |
|- ( ph -> A. i e. Z ( ( k e. Z |-> B ) ` i ) e. CC ) |
110 |
10 4
|
climbddf |
|- ( ( M e. ZZ /\ ( k e. Z |-> B ) e. dom ~~> /\ A. i e. Z ( ( k e. Z |-> B ) ` i ) e. CC ) -> E. x e. RR A. i e. Z ( abs ` ( ( k e. Z |-> B ) ` i ) ) <_ x ) |
111 |
3 8 109 110
|
syl3anc |
|- ( ph -> E. x e. RR A. i e. Z ( abs ` ( ( k e. Z |-> B ) ` i ) ) <_ x ) |
112 |
9 107
|
rexabsle2 |
|- ( ph -> ( E. x e. RR A. i e. Z ( abs ` ( ( k e. Z |-> B ) ` i ) ) <_ x <-> ( E. x e. RR A. i e. Z ( ( k e. Z |-> B ) ` i ) <_ x /\ E. x e. RR A. i e. Z x <_ ( ( k e. Z |-> B ) ` i ) ) ) ) |
113 |
111 112
|
mpbid |
|- ( ph -> ( E. x e. RR A. i e. Z ( ( k e. Z |-> B ) ` i ) <_ x /\ E. x e. RR A. i e. Z x <_ ( ( k e. Z |-> B ) ` i ) ) ) |
114 |
113
|
simprd |
|- ( ph -> E. x e. RR A. i e. Z x <_ ( ( k e. Z |-> B ) ` i ) ) |
115 |
9 10 4 3 11 106 114
|
climinf2 |
|- ( ph -> ( k e. Z |-> B ) ~~> inf ( ran ( k e. Z |-> B ) , RR* , < ) ) |