Metamath Proof Explorer


Theorem climinf2mpt

Description: A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf2mpt.p k φ
climinf2mpt.j j φ
climinf2mpt.m φ M
climinf2mpt.z Z = M
climinf2mpt.b φ k Z B
climinf2mpt.c k = j B = C
climinf2mpt.l φ k Z j = k + 1 C B
climinf2mpt.e φ k Z B dom
Assertion climinf2mpt φ k Z B sup ran k Z B * <

Proof

Step Hyp Ref Expression
1 climinf2mpt.p k φ
2 climinf2mpt.j j φ
3 climinf2mpt.m φ M
4 climinf2mpt.z Z = M
5 climinf2mpt.b φ k Z B
6 climinf2mpt.c k = j B = C
7 climinf2mpt.l φ k Z j = k + 1 C B
8 climinf2mpt.e φ k Z B dom
9 nfv i φ
10 nfcv _ i k Z B
11 1 5 fmptd2f φ k Z B : Z
12 nfv k i Z
13 1 12 nfan k φ i Z
14 nfv k i + 1 / j C i / j C
15 13 14 nfim k φ i Z i + 1 / j C i / j C
16 eleq1 k = i k Z i Z
17 16 anbi2d k = i φ k Z φ i Z
18 oveq1 k = i k + 1 = i + 1
19 18 csbeq1d k = i k + 1 / j C = i + 1 / j C
20 eqidd k = i B = B
21 csbcow k / j j / k B = k / k B
22 csbid k / k B = B
23 21 22 eqtr2i B = k / j j / k B
24 nfcv _ j B
25 nfcv _ k C
26 24 25 6 cbvcsbw j / k B = j / j C
27 csbid j / j C = C
28 26 27 eqtri j / k B = C
29 28 csbeq2i k / j j / k B = k / j C
30 23 29 eqtri B = k / j C
31 30 a1i k = i B = k / j C
32 csbeq1 k = i k / j C = i / j C
33 20 31 32 3eqtrd k = i B = i / j C
34 19 33 breq12d k = i k + 1 / j C B i + 1 / j C i / j C
35 17 34 imbi12d k = i φ k Z k + 1 / j C B φ i Z i + 1 / j C i / j C
36 simpl φ k Z φ
37 simpr φ k Z k Z
38 eqidd φ k Z k + 1 = k + 1
39 nfv j k Z
40 nfv j k + 1 = k + 1
41 2 39 40 nf3an j φ k Z k + 1 = k + 1
42 nfcsb1v _ j k + 1 / j C
43 nfcv _ j
44 42 43 24 nfbr j k + 1 / j C B
45 41 44 nfim j φ k Z k + 1 = k + 1 k + 1 / j C B
46 ovex k + 1 V
47 eqeq1 j = k + 1 j = k + 1 k + 1 = k + 1
48 47 3anbi3d j = k + 1 φ k Z j = k + 1 φ k Z k + 1 = k + 1
49 csbeq1a j = k + 1 C = k + 1 / j C
50 49 breq1d j = k + 1 C B k + 1 / j C B
51 48 50 imbi12d j = k + 1 φ k Z j = k + 1 C B φ k Z k + 1 = k + 1 k + 1 / j C B
52 45 46 51 7 vtoclf φ k Z k + 1 = k + 1 k + 1 / j C B
53 36 37 38 52 syl3anc φ k Z k + 1 / j C B
54 15 35 53 chvarfv φ i Z i + 1 / j C i / j C
55 24 25 6 cbvcsbw i + 1 / k B = i + 1 / j C
56 55 a1i φ i Z i + 1 / k B = i + 1 / j C
57 eqidd φ i Z i / j C = i / j C
58 56 57 breq12d φ i Z i + 1 / k B i / j C i + 1 / j C i / j C
59 54 58 mpbird φ i Z i + 1 / k B i / j C
60 4 peano2uzs i Z i + 1 Z
61 60 adantl φ i Z i + 1 Z
62 nfv k i + 1 Z
63 1 62 nfan k φ i + 1 Z
64 nfcv _ k i + 1
65 64 nfcsb1 _ k i + 1 / k B
66 65 nfel1 k i + 1 / k B
67 63 66 nfim k φ i + 1 Z i + 1 / k B
68 ovex i + 1 V
69 eleq1 k = i + 1 k Z i + 1 Z
70 69 anbi2d k = i + 1 φ k Z φ i + 1 Z
71 csbeq1a k = i + 1 B = i + 1 / k B
72 71 eleq1d k = i + 1 B i + 1 / k B
73 70 72 imbi12d k = i + 1 φ k Z B φ i + 1 Z i + 1 / k B
74 67 68 73 5 vtoclf φ i + 1 Z i + 1 / k B
75 60 74 sylan2 φ i Z i + 1 / k B
76 eqid k Z B = k Z B
77 64 65 71 76 fvmptf i + 1 Z i + 1 / k B k Z B i + 1 = i + 1 / k B
78 61 75 77 syl2anc φ i Z k Z B i + 1 = i + 1 / k B
79 simpr φ i Z i Z
80 nfv j i Z
81 2 80 nfan j φ i Z
82 nfcsb1v _ j i / j C
83 nfcv _ j
84 82 83 nfel j i / j C
85 81 84 nfim j φ i Z i / j C
86 eleq1 j = i j Z i Z
87 86 anbi2d j = i φ j Z φ i Z
88 csbeq1a j = i C = i / j C
89 88 eleq1d j = i C i / j C
90 87 89 imbi12d j = i φ j Z C φ i Z i / j C
91 nfv k j Z
92 1 91 nfan k φ j Z
93 nfv k C
94 92 93 nfim k φ j Z C
95 eleq1 k = j k Z j Z
96 95 anbi2d k = j φ k Z φ j Z
97 6 eleq1d k = j B C
98 96 97 imbi12d k = j φ k Z B φ j Z C
99 94 98 5 chvarfv φ j Z C
100 85 90 99 chvarfv φ i Z i / j C
101 nfcv _ k i
102 nfcv _ k i / j C
103 101 102 33 76 fvmptf i Z i / j C k Z B i = i / j C
104 79 100 103 syl2anc φ i Z k Z B i = i / j C
105 78 104 breq12d φ i Z k Z B i + 1 k Z B i i + 1 / k B i / j C
106 59 105 mpbird φ i Z k Z B i + 1 k Z B i
107 104 100 eqeltrd φ i Z k Z B i
108 107 recnd φ i Z k Z B i
109 108 ralrimiva φ i Z k Z B i
110 10 4 climbddf M k Z B dom i Z k Z B i x i Z k Z B i x
111 3 8 109 110 syl3anc φ x i Z k Z B i x
112 9 107 rexabsle2 φ x i Z k Z B i x x i Z k Z B i x x i Z x k Z B i
113 111 112 mpbid φ x i Z k Z B i x x i Z x k Z B i
114 113 simprd φ x i Z x k Z B i
115 9 10 4 3 11 106 114 climinf2 φ k Z B sup ran k Z B * <