Metamath Proof Explorer


Theorem rexabsle2

Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rexabsle2.1 xφ
rexabsle2.2 φxAB
Assertion rexabsle2 φyxAByyxAByyxAyB

Proof

Step Hyp Ref Expression
1 rexabsle2.1 xφ
2 rexabsle2.2 φxAB
3 1 2 rexabsle φyxAByyxAByyxAyB