Metamath Proof Explorer


Theorem infxrunb3rnmpt

Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infxrunb3rnmpt.1 x φ
infxrunb3rnmpt.2 y φ
infxrunb3rnmpt.3 φ x A B *
Assertion infxrunb3rnmpt φ y x A B y sup ran x A B * < = −∞

Proof

Step Hyp Ref Expression
1 infxrunb3rnmpt.1 x φ
2 infxrunb3rnmpt.2 y φ
3 infxrunb3rnmpt.3 φ x A B *
4 nfmpt1 _ x x A B
5 4 nfrn _ x ran x A B
6 nfv x z y
7 5 6 nfrex x z ran x A B z y
8 simpr φ x A x A
9 eqid x A B = x A B
10 9 elrnmpt1 x A B * B ran x A B
11 8 3 10 syl2anc φ x A B ran x A B
12 11 3adant3 φ x A B y B ran x A B
13 simp3 φ x A B y B y
14 breq1 z = B z y B y
15 14 rspcev B ran x A B B y z ran x A B z y
16 12 13 15 syl2anc φ x A B y z ran x A B z y
17 16 3exp φ x A B y z ran x A B z y
18 1 7 17 rexlimd φ x A B y z ran x A B z y
19 nfv z x A B y
20 vex z V
21 9 elrnmpt z V z ran x A B x A z = B
22 20 21 ax-mp z ran x A B x A z = B
23 22 biimpi z ran x A B x A z = B
24 14 biimpcd z y z = B B y
25 24 a1d z y x A z = B B y
26 6 25 reximdai z y x A z = B x A B y
27 26 com12 x A z = B z y x A B y
28 23 27 syl z ran x A B z y x A B y
29 19 28 rexlimi z ran x A B z y x A B y
30 29 a1i φ z ran x A B z y x A B y
31 18 30 impbid φ x A B y z ran x A B z y
32 2 31 ralbid φ y x A B y y z ran x A B z y
33 1 9 3 rnmptssd φ ran x A B *
34 infxrunb3 ran x A B * y z ran x A B z y sup ran x A B * < = −∞
35 33 34 syl φ y z ran x A B z y sup ran x A B * < = −∞
36 32 35 bitrd φ y x A B y sup ran x A B * < = −∞