Metamath Proof Explorer


Theorem supxrre3rnmpt

Description: The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supxrre3rnmpt.x xφ
supxrre3rnmpt.a φA
supxrre3rnmpt.b φxAB
Assertion supxrre3rnmpt φsupranxAB*<yxABy

Proof

Step Hyp Ref Expression
1 supxrre3rnmpt.x xφ
2 supxrre3rnmpt.a φA
3 supxrre3rnmpt.b φxAB
4 eqid xAB=xAB
5 1 4 3 rnmptssd φranxAB
6 1 3 4 2 rnmptn0 φranxAB
7 supxrre3 ranxABranxABsupranxAB*<yzranxABzy
8 5 6 7 syl2anc φsupranxAB*<yzranxABzy
9 1 3 rnmptbd φyxAByyzranxABzy
10 8 9 bitr4d φsupranxAB*<yxABy