Description: The supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrre3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrre1 | |
|
2 | id | |
|
3 | rexr | |
|
4 | 3 | ssriv | |
5 | 4 | a1i | |
6 | 2 5 | sstrd | |
7 | supxrbnd2 | |
|
8 | 6 7 | syl | |
9 | 8 | bicomd | |
10 | 9 | adantr | |
11 | 1 10 | bitrd | |