Metamath Proof Explorer


Theorem supxrre3

Description: The supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion supxrre3 AAsupA*<xyAyx

Proof

Step Hyp Ref Expression
1 supxrre1 AAsupA*<supA*<<+∞
2 id AA
3 rexr xx*
4 3 ssriv *
5 4 a1i A*
6 2 5 sstrd AA*
7 supxrbnd2 A*xyAyxsupA*<<+∞
8 6 7 syl AxyAyxsupA*<<+∞
9 8 bicomd AsupA*<<+∞xyAyx
10 9 adantr AAsupA*<<+∞xyAyx
11 1 10 bitrd AAsupA*<xyAyx