Metamath Proof Explorer


Theorem supxrre1

Description: The supremum of a nonempty set of reals is real iff it is less than plus infinity. (Contributed by NM, 5-Feb-2006)

Ref Expression
Assertion supxrre1 AAsupA*<supA*<<+∞

Proof

Step Hyp Ref Expression
1 supxrgtmnf AA−∞<supA*<
2 ressxr *
3 sstr A*A*
4 2 3 mpan2 AA*
5 supxrcl A*supA*<*
6 xrrebnd supA*<*supA*<−∞<supA*<supA*<<+∞
7 4 5 6 3syl AsupA*<−∞<supA*<supA*<<+∞
8 7 adantr AAsupA*<−∞<supA*<supA*<<+∞
9 1 8 mpbirand AAsupA*<supA*<<+∞