Metamath Proof Explorer


Theorem supxrgtmnf

Description: The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006)

Ref Expression
Assertion supxrgtmnf AA−∞<supA*<

Proof

Step Hyp Ref Expression
1 supxrbnd AAsupA*<<+∞supA*<
2 1 3expia AAsupA*<<+∞supA*<
3 2 con3d AA¬supA*<¬supA*<<+∞
4 ressxr *
5 sstr A*A*
6 4 5 mpan2 AA*
7 supxrcl A*supA*<*
8 6 7 syl AsupA*<*
9 8 adantr AAsupA*<*
10 nltpnft supA*<*supA*<=+∞¬supA*<<+∞
11 9 10 syl AAsupA*<=+∞¬supA*<<+∞
12 3 11 sylibrd AA¬supA*<supA*<=+∞
13 12 orrd AAsupA*<supA*<=+∞
14 mnfltxr supA*<supA*<=+∞−∞<supA*<
15 13 14 syl AA−∞<supA*<