Metamath Proof Explorer


Theorem supxrre2

Description: The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006)

Ref Expression
Assertion supxrre2 AAsupA*<supA*<+∞

Proof

Step Hyp Ref Expression
1 supxrre1 AAsupA*<supA*<<+∞
2 ressxr *
3 sstr A*A*
4 2 3 mpan2 AA*
5 supxrcl A*supA*<*
6 nltpnft supA*<*supA*<=+∞¬supA*<<+∞
7 4 5 6 3syl AsupA*<=+∞¬supA*<<+∞
8 7 necon2abid AsupA*<<+∞supA*<+∞
9 8 adantr AAsupA*<<+∞supA*<+∞
10 1 9 bitrd AAsupA*<supA*<+∞