| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supxrre1 |  |-  ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> sup ( A , RR* , < ) < +oo ) ) | 
						
							| 2 |  | ressxr |  |-  RR C_ RR* | 
						
							| 3 |  | sstr |  |-  ( ( A C_ RR /\ RR C_ RR* ) -> A C_ RR* ) | 
						
							| 4 | 2 3 | mpan2 |  |-  ( A C_ RR -> A C_ RR* ) | 
						
							| 5 |  | supxrcl |  |-  ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) | 
						
							| 6 |  | nltpnft |  |-  ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) | 
						
							| 7 | 4 5 6 | 3syl |  |-  ( A C_ RR -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) | 
						
							| 8 | 7 | necon2abid |  |-  ( A C_ RR -> ( sup ( A , RR* , < ) < +oo <-> sup ( A , RR* , < ) =/= +oo ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) < +oo <-> sup ( A , RR* , < ) =/= +oo ) ) | 
						
							| 10 | 1 9 | bitrd |  |-  ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> sup ( A , RR* , < ) =/= +oo ) ) |