| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supxrre1 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅ )  →  ( sup ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( 𝐴 ,  ℝ* ,   <  )  <  +∞ ) ) | 
						
							| 2 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 3 |  | sstr | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ℝ  ⊆  ℝ* )  →  𝐴  ⊆  ℝ* ) | 
						
							| 4 | 2 3 | mpan2 | ⊢ ( 𝐴  ⊆  ℝ  →  𝐴  ⊆  ℝ* ) | 
						
							| 5 |  | supxrcl | ⊢ ( 𝐴  ⊆  ℝ*  →  sup ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 6 |  | nltpnft | ⊢ ( sup ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ*  →  ( sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞  ↔  ¬  sup ( 𝐴 ,  ℝ* ,   <  )  <  +∞ ) ) | 
						
							| 7 | 4 5 6 | 3syl | ⊢ ( 𝐴  ⊆  ℝ  →  ( sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞  ↔  ¬  sup ( 𝐴 ,  ℝ* ,   <  )  <  +∞ ) ) | 
						
							| 8 | 7 | necon2abid | ⊢ ( 𝐴  ⊆  ℝ  →  ( sup ( 𝐴 ,  ℝ* ,   <  )  <  +∞  ↔  sup ( 𝐴 ,  ℝ* ,   <  )  ≠  +∞ ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅ )  →  ( sup ( 𝐴 ,  ℝ* ,   <  )  <  +∞  ↔  sup ( 𝐴 ,  ℝ* ,   <  )  ≠  +∞ ) ) | 
						
							| 10 | 1 9 | bitrd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅ )  →  ( sup ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( 𝐴 ,  ℝ* ,   <  )  ≠  +∞ ) ) |