Metamath Proof Explorer


Theorem supxrre3rnmpt

Description: The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supxrre3rnmpt.x 𝑥 𝜑
supxrre3rnmpt.a ( 𝜑𝐴 ≠ ∅ )
supxrre3rnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion supxrre3rnmpt ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ) )

Proof

Step Hyp Ref Expression
1 supxrre3rnmpt.x 𝑥 𝜑
2 supxrre3rnmpt.a ( 𝜑𝐴 ≠ ∅ )
3 supxrre3rnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 1 4 3 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ )
6 1 3 4 2 rnmptn0 ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ≠ ∅ )
7 supxrre3 ( ( ran ( 𝑥𝐴𝐵 ) ⊆ ℝ ∧ ran ( 𝑥𝐴𝐵 ) ≠ ∅ ) → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
8 5 6 7 syl2anc ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
9 1 3 rnmptbd ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
10 8 9 bitr4d ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ) )