| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnmptbd.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
rnmptbd.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 3 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑤 ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ) ) |
| 5 |
4
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ) ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑤 𝜑 |
| 8 |
1 7 2
|
rnmptbdlem |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑢 ≤ 𝑤 ) ) |
| 9 |
|
breq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑢 ≤ 𝑤 ↔ 𝑢 ≤ 𝑦 ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑢 ≤ 𝑤 ↔ ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑢 ≤ 𝑦 ) ) |
| 11 |
|
breq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦 ) ) |
| 12 |
11
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑢 ≤ 𝑦 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 13 |
10 12
|
bitrdi |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑢 ≤ 𝑤 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 14 |
13
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑢 ≤ 𝑤 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑢 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑢 ≤ 𝑤 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 16 |
6 8 15
|
3bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |