Metamath Proof Explorer


Theorem rnmptbdlem

Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbdlem.x 𝑥 𝜑
rnmptbdlem.y 𝑦 𝜑
rnmptbdlem.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion rnmptbdlem ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 rnmptbdlem.x 𝑥 𝜑
2 rnmptbdlem.y 𝑦 𝜑
3 rnmptbdlem.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
4 nfcv 𝑥
5 nfra1 𝑥𝑥𝐴 𝐵𝑦
6 4 5 nfrex 𝑥𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦
7 1 6 nfan 𝑥 ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
8 simpr ( ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 )
9 7 8 rnmptbdd ( ( 𝜑 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
10 9 ex ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
11 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
12 11 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
13 nfv 𝑥 𝑧𝑦
14 12 13 nfralw 𝑥𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦
15 1 14 nfan 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
16 breq1 ( 𝑧 = 𝐵 → ( 𝑧𝑦𝐵𝑦 ) )
17 simplr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) ∧ 𝑥𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
18 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
19 simpr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
20 3 adantlr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) ∧ 𝑥𝐴 ) → 𝐵𝑉 )
21 18 19 20 elrnmpt1d ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
22 16 17 21 rspcdva ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) ∧ 𝑥𝐴 ) → 𝐵𝑦 )
23 15 22 ralrimia ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) → ∀ 𝑥𝐴 𝐵𝑦 )
24 23 ex ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 → ∀ 𝑥𝐴 𝐵𝑦 ) )
25 24 a1d ( 𝜑 → ( 𝑦 ∈ ℝ → ( ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 → ∀ 𝑥𝐴 𝐵𝑦 ) ) )
26 2 25 reximdai ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ) )
27 10 26 impbid ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )