| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzublem.1 |
⊢ Ⅎ 𝑗 𝜑 |
| 2 |
|
uzublem.2 |
⊢ Ⅎ 𝑗 𝑋 |
| 3 |
|
uzublem.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
uzublem.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
uzublem.5 |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 6 |
|
uzublem.6 |
⊢ 𝑊 = sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) |
| 7 |
|
uzublem.7 |
⊢ 𝑋 = if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) |
| 8 |
|
uzublem.8 |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
| 9 |
|
uzublem.9 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 10 |
|
uzublem.10 |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝐵 ≤ 𝑌 ) |
| 11 |
6
|
a1i |
⊢ ( 𝜑 → 𝑊 = sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 12 |
|
ltso |
⊢ < Or ℝ |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 14 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝐾 ) ∈ Fin ) |
| 15 |
4
|
eluzelz2 |
⊢ ( 𝐾 ∈ 𝑍 → 𝐾 ∈ ℤ ) |
| 16 |
8 15
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 17 |
3
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 18 |
17
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
| 19 |
8 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 20 |
|
eluzle |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝐾 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
| 22 |
3 16 3 18 21
|
elfzd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝐾 ) ) |
| 23 |
22
|
ne0d |
⊢ ( 𝜑 → ( 𝑀 ... 𝐾 ) ≠ ∅ ) |
| 24 |
|
fzssuz |
⊢ ( 𝑀 ... 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
| 25 |
4
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
| 26 |
24 25
|
sseqtri |
⊢ ( 𝑀 ... 𝐾 ) ⊆ 𝑍 |
| 27 |
|
id |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) → 𝑗 ∈ ( 𝑀 ... 𝐾 ) ) |
| 28 |
26 27
|
sselid |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) → 𝑗 ∈ 𝑍 ) |
| 29 |
28 9
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝐾 ) ) → 𝐵 ∈ ℝ ) |
| 30 |
1 13 14 23 29
|
fisupclrnmpt |
⊢ ( 𝜑 → sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 31 |
11 30
|
eqeltrd |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 32 |
5 31
|
ifcld |
⊢ ( 𝜑 → if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ∈ ℝ ) |
| 33 |
7 32
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 34 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐵 ∈ ℝ ) |
| 35 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑌 ∈ ℝ ) |
| 36 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑋 ∈ ℝ ) |
| 37 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝐵 ≤ 𝑌 ) |
| 38 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝐾 ) = ( ℤ≥ ‘ 𝐾 ) |
| 39 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐾 ∈ ℤ ) |
| 40 |
4
|
eluzelz2 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 41 |
40
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑗 ∈ ℤ ) |
| 42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐾 ≤ 𝑗 ) |
| 43 |
38 39 41 42
|
eluzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 44 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝐵 ≤ 𝑌 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐵 ≤ 𝑌 ) |
| 45 |
37 43 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐵 ≤ 𝑌 ) |
| 46 |
|
max2 |
⊢ ( ( 𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → 𝑌 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
| 47 |
31 5 46
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
| 48 |
47 7
|
breqtrrdi |
⊢ ( 𝜑 → 𝑌 ≤ 𝑋 ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑌 ≤ 𝑋 ) |
| 50 |
34 35 36 45 49
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐵 ≤ 𝑋 ) |
| 51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → ¬ 𝐾 ≤ 𝑗 ) |
| 52 |
|
uzssre |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 53 |
4 52
|
eqsstri |
⊢ 𝑍 ⊆ ℝ |
| 54 |
53
|
sseli |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ ) |
| 55 |
54
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
| 56 |
53 8
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → 𝐾 ∈ ℝ ) |
| 58 |
55 57
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → ( 𝑗 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑗 ) ) |
| 59 |
51 58
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → 𝑗 < 𝐾 ) |
| 60 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐵 ∈ ℝ ) |
| 61 |
6 31
|
eqeltrrid |
⊢ ( 𝜑 → sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
| 62 |
6 61
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑊 ∈ ℝ ) |
| 64 |
5 62
|
ifcld |
⊢ ( 𝜑 → if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ∈ ℝ ) |
| 65 |
7 64
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑋 ∈ ℝ ) |
| 67 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝜑 ) |
| 68 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑀 ∈ ℤ ) |
| 69 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐾 ∈ ℤ ) |
| 70 |
4
|
eleq2i |
⊢ ( 𝑗 ∈ 𝑍 ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 71 |
70
|
biimpi |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 72 |
71
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 73 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 < 𝐾 ) |
| 74 |
72 69 73
|
elfzod |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) |
| 75 |
|
elfzouz |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 76 |
75 25
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ 𝑍 ) |
| 77 |
74 76 40
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ℤ ) |
| 78 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑗 ) |
| 79 |
71 78
|
syl |
⊢ ( 𝑗 ∈ 𝑍 → 𝑀 ≤ 𝑗 ) |
| 80 |
79
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑀 ≤ 𝑗 ) |
| 81 |
74 76 54
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ℝ ) |
| 82 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐾 ∈ ℝ ) |
| 83 |
81 82 73
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ≤ 𝐾 ) |
| 84 |
68 69 77 80 83
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ( 𝑀 ... 𝐾 ) ) |
| 85 |
1 29
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝑀 ... 𝐾 ) 𝐵 ∈ ℝ ) |
| 86 |
|
fimaxre3 |
⊢ ( ( ( 𝑀 ... 𝐾 ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 𝑀 ... 𝐾 ) 𝐵 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ ( 𝑀 ... 𝐾 ) 𝐵 ≤ 𝑦 ) |
| 87 |
14 85 86
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ ( 𝑀 ... 𝐾 ) 𝐵 ≤ 𝑦 ) |
| 88 |
1 29 87
|
suprubrnmpt |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝐾 ) ) → 𝐵 ≤ sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 89 |
67 84 88
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐵 ≤ sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ) |
| 90 |
89 6
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐵 ≤ 𝑊 ) |
| 91 |
|
max1 |
⊢ ( ( 𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → 𝑊 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
| 92 |
31 5 91
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
| 93 |
92 7
|
breqtrrdi |
⊢ ( 𝜑 → 𝑊 ≤ 𝑋 ) |
| 94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑊 ≤ 𝑋 ) |
| 95 |
60 63 66 90 94
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐵 ≤ 𝑋 ) |
| 96 |
59 95
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → 𝐵 ≤ 𝑋 ) |
| 97 |
50 96
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐵 ≤ 𝑋 ) |
| 98 |
97
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 → 𝐵 ≤ 𝑋 ) ) |
| 99 |
1 98
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑋 ) |
| 100 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑋 |
| 101 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
| 102 |
101 2
|
nfeq |
⊢ Ⅎ 𝑗 𝑥 = 𝑋 |
| 103 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝑋 ) ) |
| 104 |
102 103
|
ralbid |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ↔ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑋 ) ) |
| 105 |
100 104
|
rspce |
⊢ ( ( 𝑋 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑋 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) |
| 106 |
33 99 105
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) |