Step |
Hyp |
Ref |
Expression |
1 |
|
uzublem.1 |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
uzublem.2 |
⊢ Ⅎ 𝑗 𝑋 |
3 |
|
uzublem.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
uzublem.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
uzublem.5 |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
6 |
|
uzublem.6 |
⊢ 𝑊 = sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) |
7 |
|
uzublem.7 |
⊢ 𝑋 = if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) |
8 |
|
uzublem.8 |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
9 |
|
uzublem.9 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
10 |
|
uzublem.10 |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝐵 ≤ 𝑌 ) |
11 |
6
|
a1i |
⊢ ( 𝜑 → 𝑊 = sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ) |
12 |
|
ltso |
⊢ < Or ℝ |
13 |
12
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
14 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝐾 ) ∈ Fin ) |
15 |
4
|
eluzelz2 |
⊢ ( 𝐾 ∈ 𝑍 → 𝐾 ∈ ℤ ) |
16 |
8 15
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
17 |
3
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
18 |
17
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
19 |
8 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
20 |
|
eluzle |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝐾 ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
22 |
3 16 3 18 21
|
elfzd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝐾 ) ) |
23 |
22
|
ne0d |
⊢ ( 𝜑 → ( 𝑀 ... 𝐾 ) ≠ ∅ ) |
24 |
|
fzssuz |
⊢ ( 𝑀 ... 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
25 |
4
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
26 |
24 25
|
sseqtri |
⊢ ( 𝑀 ... 𝐾 ) ⊆ 𝑍 |
27 |
|
id |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) → 𝑗 ∈ ( 𝑀 ... 𝐾 ) ) |
28 |
26 27
|
sselid |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) → 𝑗 ∈ 𝑍 ) |
29 |
28 9
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝐾 ) ) → 𝐵 ∈ ℝ ) |
30 |
1 13 14 23 29
|
fisupclrnmpt |
⊢ ( 𝜑 → sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
31 |
11 30
|
eqeltrd |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
32 |
5 31
|
ifcld |
⊢ ( 𝜑 → if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ∈ ℝ ) |
33 |
7 32
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
34 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐵 ∈ ℝ ) |
35 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑌 ∈ ℝ ) |
36 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑋 ∈ ℝ ) |
37 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝐵 ≤ 𝑌 ) |
38 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝐾 ) = ( ℤ≥ ‘ 𝐾 ) |
39 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐾 ∈ ℤ ) |
40 |
4
|
eluzelz2 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑗 ∈ ℤ ) |
42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐾 ≤ 𝑗 ) |
43 |
38 39 41 42
|
eluzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
44 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝐵 ≤ 𝑌 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐵 ≤ 𝑌 ) |
45 |
37 43 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐵 ≤ 𝑌 ) |
46 |
|
max2 |
⊢ ( ( 𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → 𝑌 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
47 |
31 5 46
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
48 |
47 7
|
breqtrrdi |
⊢ ( 𝜑 → 𝑌 ≤ 𝑋 ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝑌 ≤ 𝑋 ) |
50 |
34 35 36 45 49
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝐾 ≤ 𝑗 ) → 𝐵 ≤ 𝑋 ) |
51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → ¬ 𝐾 ≤ 𝑗 ) |
52 |
|
uzssre |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
53 |
4 52
|
eqsstri |
⊢ 𝑍 ⊆ ℝ |
54 |
53
|
sseli |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ ) |
55 |
54
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
56 |
53 8
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → 𝐾 ∈ ℝ ) |
58 |
55 57
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → ( 𝑗 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑗 ) ) |
59 |
51 58
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → 𝑗 < 𝐾 ) |
60 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐵 ∈ ℝ ) |
61 |
6 31
|
eqeltrrid |
⊢ ( 𝜑 → sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ∈ ℝ ) |
62 |
6 61
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑊 ∈ ℝ ) |
64 |
5 62
|
ifcld |
⊢ ( 𝜑 → if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ∈ ℝ ) |
65 |
7 64
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑋 ∈ ℝ ) |
67 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝜑 ) |
68 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑀 ∈ ℤ ) |
69 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐾 ∈ ℤ ) |
70 |
4
|
eleq2i |
⊢ ( 𝑗 ∈ 𝑍 ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
71 |
70
|
biimpi |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
72 |
71
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
73 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 < 𝐾 ) |
74 |
72 69 73
|
elfzod |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) ) |
75 |
|
elfzouz |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
76 |
75 25
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝐾 ) → 𝑗 ∈ 𝑍 ) |
77 |
74 76 40
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ℤ ) |
78 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑗 ) |
79 |
71 78
|
syl |
⊢ ( 𝑗 ∈ 𝑍 → 𝑀 ≤ 𝑗 ) |
80 |
79
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑀 ≤ 𝑗 ) |
81 |
74 76 54
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ℝ ) |
82 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐾 ∈ ℝ ) |
83 |
81 82 73
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ≤ 𝐾 ) |
84 |
68 69 77 80 83
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑗 ∈ ( 𝑀 ... 𝐾 ) ) |
85 |
1 29
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝑀 ... 𝐾 ) 𝐵 ∈ ℝ ) |
86 |
|
fimaxre3 |
⊢ ( ( ( 𝑀 ... 𝐾 ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 𝑀 ... 𝐾 ) 𝐵 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ ( 𝑀 ... 𝐾 ) 𝐵 ≤ 𝑦 ) |
87 |
14 85 86
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ ( 𝑀 ... 𝐾 ) 𝐵 ≤ 𝑦 ) |
88 |
1 29 87
|
suprubrnmpt |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝐾 ) ) → 𝐵 ≤ sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ) |
89 |
67 84 88
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐵 ≤ sup ( ran ( 𝑗 ∈ ( 𝑀 ... 𝐾 ) ↦ 𝐵 ) , ℝ , < ) ) |
90 |
89 6
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐵 ≤ 𝑊 ) |
91 |
|
max1 |
⊢ ( ( 𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → 𝑊 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
92 |
31 5 91
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ≤ if ( 𝑊 ≤ 𝑌 , 𝑌 , 𝑊 ) ) |
93 |
92 7
|
breqtrrdi |
⊢ ( 𝜑 → 𝑊 ≤ 𝑋 ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝑊 ≤ 𝑋 ) |
95 |
60 63 66 90 94
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑗 < 𝐾 ) → 𝐵 ≤ 𝑋 ) |
96 |
59 95
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ 𝐾 ≤ 𝑗 ) → 𝐵 ≤ 𝑋 ) |
97 |
50 96
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐵 ≤ 𝑋 ) |
98 |
97
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 → 𝐵 ≤ 𝑋 ) ) |
99 |
1 98
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑋 ) |
100 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑋 |
101 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
102 |
101 2
|
nfeq |
⊢ Ⅎ 𝑗 𝑥 = 𝑋 |
103 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝑋 ) ) |
104 |
102 103
|
ralbid |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ↔ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑋 ) ) |
105 |
100 104
|
rspce |
⊢ ( ( 𝑋 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑋 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) |
106 |
33 99 105
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) |